搜索
[DesireCourse.Net] Udemy - Tensorflow 2.0 Deep Learning and Artificial Intelligence
磁力链接/BT种子名称
[DesireCourse.Net] Udemy - Tensorflow 2.0 Deep Learning and Artificial Intelligence
磁力链接/BT种子简介
种子哈希:
ff37ce1043e06ba5a6b030af42c408cf579f652e
文件大小:
6.73G
已经下载:
42
次
下载速度:
极快
收录时间:
2022-01-11
最近下载:
2025-02-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:FF37CE1043E06BA5A6B030AF42C408CF579F652E
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
瘦猴
拍拍原创
仑
爱露出
酒店偷拍反差婊长裙眼镜美女下班
rammstein
果如
ghls-54
洗澡
宿舍被
6
女子行动队
女神级别身材看到就是赚到
#patreon
expanded
俄罗斯地狱尖兵
digimon adventure tri
捆绑 销售
激战
丁
天使心
laf 55
开大车
中年 无码
大姑娘
rinka
无能的
pthc 16
欣妍大大
rammstein - sehnsucht
文件列表
18. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4
203.4 MB
18. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
174.8 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem.mp4
150.1 MB
13. Advanced Tensorflow Usage/2. Tensorflow Serving pt 2.mp4
130.5 MB
18. Appendix FAQ/11. What order should I take your courses in (part 2).mp4
128.6 MB
18. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
122.8 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.mp4
108.2 MB
11. Deep Reinforcement Learning (Theory)/2. Elements of a Reinforcement Learning Problem.mp4
102.5 MB
4. Feedforward Artificial Neural Networks/4. Activation Functions.mp4
96.6 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.mp4
96.5 MB
5. Convolutional Neural Networks/5. CNN Architecture.mp4
95.4 MB
2. Google Colab/3. Uploading your own data to Google Colab.mp4
93.4 MB
18. Appendix FAQ/10. What order should I take your courses in (part 1).mp4
92.4 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.mp4
91.9 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.mp4
91.5 MB
10. GANs (Generative Adversarial Networks)/1. GAN Theory.mp4
90.7 MB
5. Convolutional Neural Networks/11. Improving CIFAR-10 Results.mp4
90.5 MB
5. Convolutional Neural Networks/6. CNN Code Preparation.mp4
90.5 MB
4. Feedforward Artificial Neural Networks/9. ANN for Regression.mp4
88.0 MB
5. Convolutional Neural Networks/1. What is Convolution (part 1).mp4
87.6 MB
12. Stock Trading Project with Deep Reinforcement Learning/6. Code pt 2.mp4
87.4 MB
18. Appendix FAQ/5. How to Code Yourself (part 1).mp4
86.1 MB
4. Feedforward Artificial Neural Networks/6. How to Represent Images.mp4
84.8 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1).mp4
83.9 MB
10. GANs (Generative Adversarial Networks)/2. GAN Code.mp4
82.0 MB
18. Appendix FAQ/7. Proof that using Jupyter Notebook is the same as not using it.mp4
81.7 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.mp4
81.4 MB
5. Convolutional Neural Networks/4. Convolution on Color Images.mp4
80.8 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3).mp4
80.5 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).mp4
79.8 MB
3. Machine Learning and Neurons/1. What is Machine Learning.mp4
76.7 MB
3. Machine Learning and Neurons/5. Regression Notebook.mp4
75.2 MB
14. Low-Level Tensorflow/3. Variables and Gradient Tape.mp4
74.0 MB
14. Low-Level Tensorflow/4. Build Your Own Custom Model.mp4
73.6 MB
8. Recommender Systems/1. Recommender Systems with Deep Learning Theory.mp4
72.1 MB
3. Machine Learning and Neurons/2. Code Preparation (Classification Theory).mp4
71.8 MB
9. Transfer Learning for Computer Vision/5. Transfer Learning Code (pt 1).mp4
69.8 MB
3. Machine Learning and Neurons/3. Classification Notebook.mp4
69.5 MB
2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.mp4
68.3 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.mp4
67.5 MB
7. Natural Language Processing (NLP)/2. Code Preparation (NLP).mp4
66.0 MB
12. Stock Trading Project with Deep Reinforcement Learning/7. Code pt 3.mp4
65.4 MB
11. Deep Reinforcement Learning (Theory)/11. Q-Learning.mp4
64.3 MB
7. Natural Language Processing (NLP)/4. Text Classification with LSTMs.mp4
63.5 MB
12. Stock Trading Project with Deep Reinforcement Learning/8. Code pt 4.mp4
62.0 MB
8. Recommender Systems/2. Recommender Systems with Deep Learning Code.mp4
61.6 MB
4. Feedforward Artificial Neural Networks/8. ANN for Image Classification.mp4
61.2 MB
7. Natural Language Processing (NLP)/1. Embeddings.mp4
60.8 MB
18. Appendix FAQ/6. How to Code Yourself (part 2).mp4
59.1 MB
4. Feedforward Artificial Neural Networks/7. Code Preparation (ANN).mp4
58.9 MB
12. Stock Trading Project with Deep Reinforcement Learning/2. Data and Environment.mp4
58.7 MB
11. Deep Reinforcement Learning (Theory)/12. Deep Q-Learning DQN (pt 1).mp4
58.4 MB
9. Transfer Learning for Computer Vision/1. Transfer Learning Theory.mp4
57.8 MB
3. Machine Learning and Neurons/7. How does a model learn.mp4
57.7 MB
4. Feedforward Artificial Neural Networks/3. The Geometrical Picture.mp4
57.5 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).mp4
56.2 MB
11. Deep Reinforcement Learning (Theory)/9. Solving the Bellman Equation with Reinforcement Learning (pt 2).mp4
55.1 MB
5. Convolutional Neural Networks/7. CNN for Fashion MNIST.mp4
54.2 MB
2. Google Colab/2. Tensorflow 2.0 in Google Colab.mp4
53.6 MB
13. Advanced Tensorflow Usage/4. Why is Google the King of Distributed Computing.mp4
53.3 MB
14. Low-Level Tensorflow/2. Constants and Basic Computation.mp4
52.7 MB
13. Advanced Tensorflow Usage/5. Training with Distributed Strategies.mp4
52.5 MB
3. Machine Learning and Neurons/6. The Neuron.mp4
51.8 MB
4. Feedforward Artificial Neural Networks/2. Forward Propagation.mp4
51.7 MB
11. Deep Reinforcement Learning (Theory)/13. Deep Q-Learning DQN (pt 2).mp4
51.6 MB
11. Deep Reinforcement Learning (Theory)/4. Markov Decision Processes (MDPs).mp4
51.3 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.mp4
49.5 MB
4. Feedforward Artificial Neural Networks/5. Multiclass Classification.mp4
49.1 MB
12. Stock Trading Project with Deep Reinforcement Learning/5. Code pt 1.mp4
49.1 MB
7. Natural Language Processing (NLP)/6. Text Classification with CNNs.mp4
48.7 MB
9. Transfer Learning for Computer Vision/6. Transfer Learning Code (pt 2).mp4
48.3 MB
18. Appendix FAQ/9. Is Theano Dead.mp4
46.5 MB
2. Google Colab/4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.mp4
46.0 MB
11. Deep Reinforcement Learning (Theory)/6. Value Functions and the Bellman Equation.mp4
45.4 MB
11. Deep Reinforcement Learning (Theory)/3. States, Actions, Rewards, Policies.mp4
45.1 MB
16. In-Depth Gradient Descent/5. Adam.mp4
44.6 MB
14. Low-Level Tensorflow/1. Differences Between Tensorflow 1.x and Tensorflow 2.x.mp4
44.6 MB
13. Advanced Tensorflow Usage/3. Tensorflow Lite (TFLite).mp4
44.4 MB
3. Machine Learning and Neurons/8. Making Predictions.mp4
44.0 MB
7. Natural Language Processing (NLP)/5. CNNs for Text.mp4
42.8 MB
16. In-Depth Gradient Descent/3. Momentum.mp4
41.3 MB
5. Convolutional Neural Networks/9. Data Augmentation.mp4
41.1 MB
1. Welcome/1. Introduction.mp4
41.1 MB
11. Deep Reinforcement Learning (Theory)/8. Solving the Bellman Equation with Reinforcement Learning (pt 1).mp4
40.9 MB
18. Appendix FAQ/8. How to Succeed in this Course (Long Version).mp4
40.8 MB
16. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.mp4
40.4 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2).mp4
40.0 MB
11. Deep Reinforcement Learning (Theory)/1. Deep Reinforcement Learning Section Introduction.mp4
39.6 MB
11. Deep Reinforcement Learning (Theory)/10. Epsilon-Greedy.mp4
39.4 MB
11. Deep Reinforcement Learning (Theory)/14. How to Learn Reinforcement Learning.mp4
39.3 MB
15. In-Depth Loss Functions/1. Mean Squared Error.mp4
39.2 MB
9. Transfer Learning for Computer Vision/3. Large Datasets and Data Generators.mp4
38.3 MB
7. Natural Language Processing (NLP)/3. Text Preprocessing.mp4
37.9 MB
16. In-Depth Gradient Descent/1. Gradient Descent.mp4
37.3 MB
15. In-Depth Loss Functions/3. Categorical Cross Entropy.mp4
37.2 MB
3. Machine Learning and Neurons/9. Saving and Loading a Model.mp4
37.0 MB
5. Convolutional Neural Networks/8. CNN for CIFAR-10.mp4
36.5 MB
4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.mp4
34.1 MB
13. Advanced Tensorflow Usage/1. What is a Web Service (Tensorflow Serving pt 1).mp4
33.1 MB
9. Transfer Learning for Computer Vision/2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).mp4
33.1 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory).mp4
33.0 MB
3. Machine Learning and Neurons/4. Code Preparation (Regression Theory).mp4
32.8 MB
1. Welcome/2. Outline.mp4
32.3 MB
1. Welcome/3. Where to get the code.mp4
32.0 MB
11. Deep Reinforcement Learning (Theory)/7. What does it mean to “learn”.mp4
31.8 MB
12. Stock Trading Project with Deep Reinforcement Learning/4. Program Design and Layout.mp4
31.2 MB
12. Stock Trading Project with Deep Reinforcement Learning/1. Reinforcement Learning Stock Trader Introduction.mp4
31.1 MB
5. Convolutional Neural Networks/3. What is Convolution (part 3).mp4
30.3 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code).mp4
28.8 MB
5. Convolutional Neural Networks/2. What is Convolution (part 2).mp4
26.4 MB
16. In-Depth Gradient Descent/2. Stochastic Gradient Descent.mp4
26.3 MB
12. Stock Trading Project with Deep Reinforcement Learning/3. Replay Buffer.mp4
25.2 MB
5. Convolutional Neural Networks/10. Batch Normalization.mp4
24.6 MB
15. In-Depth Loss Functions/2. Binary Cross Entropy.mp4
22.5 MB
11. Deep Reinforcement Learning (Theory)/5. The Return.mp4
22.0 MB
9. Transfer Learning for Computer Vision/4. 2 Approaches to Transfer Learning.mp4
21.6 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.mp4
21.4 MB
6. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.mp4
19.2 MB
12. Stock Trading Project with Deep Reinforcement Learning/9. Reinforcement Learning Stock Trader Discussion.mp4
19.1 MB
18. Appendix FAQ/1. What is the Appendix.mp4
18.9 MB
18. Appendix FAQ/12. Bonus Where to get discount coupons and FREE deep learning material.mp4
13.9 MB
18. Appendix FAQ/4. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.vtt
28.3 kB
5. Convolutional Neural Networks/5. CNN Architecture.vtt
25.0 kB
11. Deep Reinforcement Learning (Theory)/2. Elements of a Reinforcement Learning Problem.vtt
23.4 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/5. Recurrent Neural Networks.vtt
22.8 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/1. Sequence Data.vtt
21.4 kB
18. Appendix FAQ/11. What order should I take your courses in (part 2).vtt
20.7 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/12. Demo of the Long Distance Problem.vtt
20.6 kB
4. Feedforward Artificial Neural Networks/4. Activation Functions.vtt
20.3 kB
18. Appendix FAQ/5. How to Code Yourself (part 1).vtt
19.8 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/9. GRU and LSTM (pt 1).vtt
18.8 kB
10. GANs (Generative Adversarial Networks)/1. GAN Theory.vtt
18.5 kB
5. Convolutional Neural Networks/4. Convolution on Color Images.vtt
18.5 kB
13. Advanced Tensorflow Usage/2. Tensorflow Serving pt 2.vtt
18.2 kB
3. Machine Learning and Neurons/2. Code Preparation (Classification Theory).vtt
18.2 kB
5. Convolutional Neural Networks/1. What is Convolution (part 1).vtt
18.0 kB
18. Appendix FAQ/2. Windows-Focused Environment Setup 2018.vtt
17.8 kB
5. Convolutional Neural Networks/6. CNN Code Preparation.vtt
17.6 kB
3. Machine Learning and Neurons/1. What is Machine Learning.vtt
16.6 kB
11. Deep Reinforcement Learning (Theory)/11. Q-Learning.vtt
16.0 kB
8. Recommender Systems/1. Recommender Systems with Deep Learning Theory.vtt
15.5 kB
7. Natural Language Processing (NLP)/2. Code Preparation (NLP).vtt
15.1 kB
11. Deep Reinforcement Learning (Theory)/12. Deep Q-Learning DQN (pt 1).vtt
14.7 kB
4. Feedforward Artificial Neural Networks/7. Code Preparation (ANN).vtt
14.6 kB
18. Appendix FAQ/10. What order should I take your courses in (part 1).vtt
14.5 kB
7. Natural Language Processing (NLP)/1. Embeddings.vtt
14.5 kB
12. Stock Trading Project with Deep Reinforcement Learning/2. Data and Environment.vtt
14.1 kB
4. Feedforward Artificial Neural Networks/6. How to Represent Images.vtt
14.0 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/15. Stock Return Predictions using LSTMs (pt 1).vtt
14.0 kB
16. In-Depth Gradient Descent/4. Variable and Adaptive Learning Rates.vtt
13.6 kB
11. Deep Reinforcement Learning (Theory)/9. Solving the Bellman Equation with Reinforcement Learning (pt 2).vtt
13.3 kB
10. GANs (Generative Adversarial Networks)/2. GAN Code.vtt
13.3 kB
18. Appendix FAQ/8. How to Succeed in this Course (Long Version).vtt
13.1 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/10. GRU and LSTM (pt 2).vtt
13.0 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/17. Stock Return Predictions using LSTMs (pt 3).vtt
12.9 kB
18. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.vtt
12.9 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/3. Autoregressive Linear Model for Time Series Prediction.vtt
12.7 kB
2. Google Colab/1. Intro to Google Colab, how to use a GPU or TPU for free.vtt
12.7 kB
18. Appendix FAQ/7. Proof that using Jupyter Notebook is the same as not using it.vtt
12.6 kB
3. Machine Learning and Neurons/7. How does a model learn.vtt
12.6 kB
9. Transfer Learning for Computer Vision/5. Transfer Learning Code (pt 1).vtt
12.4 kB
16. In-Depth Gradient Descent/5. Adam.vtt
12.2 kB
14. Low-Level Tensorflow/3. Variables and Gradient Tape.vtt
12.0 kB
14. Low-Level Tensorflow/4. Build Your Own Custom Model.vtt
11.9 kB
11. Deep Reinforcement Learning (Theory)/13. Deep Q-Learning DQN (pt 2).vtt
11.9 kB
5. Convolutional Neural Networks/11. Improving CIFAR-10 Results.vtt
11.8 kB
18. Appendix FAQ/6. How to Code Yourself (part 2).vtt
11.7 kB
4. Feedforward Artificial Neural Networks/9. ANN for Regression.vtt
11.5 kB
11. Deep Reinforcement Learning (Theory)/4. Markov Decision Processes (MDPs).vtt
11.5 kB
18. Appendix FAQ/9. Is Theano Dead.vtt
11.4 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/2. Forecasting.vtt
11.4 kB
11. Deep Reinforcement Learning (Theory)/8. Solving the Bellman Equation with Reinforcement Learning (pt 1).vtt
11.3 kB
3. Machine Learning and Neurons/6. The Neuron.vtt
11.2 kB
11. Deep Reinforcement Learning (Theory)/6. Value Functions and the Bellman Equation.vtt
11.2 kB
14. Low-Level Tensorflow/1. Differences Between Tensorflow 1.x and Tensorflow 2.x.vtt
11.0 kB
4. Feedforward Artificial Neural Networks/2. Forward Propagation.vtt
11.0 kB
3. Machine Learning and Neurons/5. Regression Notebook.vtt
10.9 kB
2. Google Colab/3. Uploading your own data to Google Colab.vtt
10.7 kB
12. Stock Trading Project with Deep Reinforcement Learning/6. Code pt 2.vtt
10.5 kB
8. Recommender Systems/2. Recommender Systems with Deep Learning Code.vtt
10.5 kB
4. Feedforward Artificial Neural Networks/3. The Geometrical Picture.vtt
10.4 kB
2. Google Colab/4. Where can I learn about Numpy, Scipy, Matplotlib, Pandas, and Scikit-Learn.vtt
10.3 kB
11. Deep Reinforcement Learning (Theory)/3. States, Actions, Rewards, Policies.vtt
10.2 kB
13. Advanced Tensorflow Usage/4. Why is Google the King of Distributed Computing.vtt
10.2 kB
15. In-Depth Loss Functions/1. Mean Squared Error.vtt
10.1 kB
5. Convolutional Neural Networks/9. Data Augmentation.vtt
10.1 kB
13. Advanced Tensorflow Usage/3. Tensorflow Lite (TFLite).vtt
9.9 kB
4. Feedforward Artificial Neural Networks/5. Multiclass Classification.vtt
9.9 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/7. RNN for Time Series Prediction.vtt
9.9 kB
9. Transfer Learning for Computer Vision/1. Transfer Learning Theory.vtt
9.6 kB
9. Transfer Learning for Computer Vision/6. Transfer Learning Code (pt 2).vtt
9.4 kB
4. Feedforward Artificial Neural Networks/8. ANN for Image Classification.vtt
8.9 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/8. Paying Attention to Shapes.vtt
8.8 kB
16. In-Depth Gradient Descent/1. Gradient Descent.vtt
8.8 kB
7. Natural Language Processing (NLP)/4. Text Classification with LSTMs.vtt
8.8 kB
15. In-Depth Loss Functions/3. Categorical Cross Entropy.vtt
8.6 kB
7. Natural Language Processing (NLP)/5. CNNs for Text.vtt
8.6 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/11. A More Challenging Sequence.vtt
8.6 kB
2. Google Colab/2. Tensorflow 2.0 in Google Colab.vtt
8.5 kB
14. Low-Level Tensorflow/2. Constants and Basic Computation.vtt
8.5 kB
3. Machine Learning and Neurons/3. Classification Notebook.vtt
8.4 kB
3. Machine Learning and Neurons/4. Code Preparation (Regression Theory).vtt
8.1 kB
17. Extras/1. Links to TF2.0 Notebooks.html
8.0 kB
11. Deep Reinforcement Learning (Theory)/7. What does it mean to “learn”.vtt
8.0 kB
9. Transfer Learning for Computer Vision/3. Large Datasets and Data Generators.vtt
7.9 kB
12. Stock Trading Project with Deep Reinforcement Learning/4. Program Design and Layout.vtt
7.8 kB
13. Advanced Tensorflow Usage/5. Training with Distributed Strategies.vtt
7.7 kB
11. Deep Reinforcement Learning (Theory)/1. Deep Reinforcement Learning Section Introduction.vtt
7.7 kB
12. Stock Trading Project with Deep Reinforcement Learning/8. Code pt 4.vtt
7.4 kB
5. Convolutional Neural Networks/3. What is Convolution (part 3).vtt
7.2 kB
3. Machine Learning and Neurons/8. Making Predictions.vtt
7.2 kB
5. Convolutional Neural Networks/7. CNN for Fashion MNIST.vtt
7.2 kB
4. Feedforward Artificial Neural Networks/1. Artificial Neural Networks Section Introduction.vtt
7.1 kB
16. In-Depth Gradient Descent/3. Momentum.vtt
7.1 kB
12. Stock Trading Project with Deep Reinforcement Learning/7. Code pt 3.vtt
7.0 kB
13. Advanced Tensorflow Usage/1. What is a Web Service (Tensorflow Serving pt 1).vtt
6.9 kB
11. Deep Reinforcement Learning (Theory)/14. How to Learn Reinforcement Learning.vtt
6.9 kB
1. Welcome/3. Where to get the code.vtt
6.8 kB
11. Deep Reinforcement Learning (Theory)/10. Epsilon-Greedy.vtt
6.7 kB
9. Transfer Learning for Computer Vision/2. Some Pre-trained Models (VGG, ResNet, Inception, MobileNet).vtt
6.6 kB
1. Welcome/2. Outline.vtt
6.5 kB
15. In-Depth Loss Functions/2. Binary Cross Entropy.vtt
6.5 kB
5. Convolutional Neural Networks/2. What is Convolution (part 2).vtt
6.5 kB
12. Stock Trading Project with Deep Reinforcement Learning/5. Code pt 1.vtt
6.5 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/6. RNN Code Preparation.vtt
6.4 kB
12. Stock Trading Project with Deep Reinforcement Learning/3. Replay Buffer.vtt
6.2 kB
12. Stock Trading Project with Deep Reinforcement Learning/1. Reinforcement Learning Stock Trader Introduction.vtt
6.1 kB
5. Convolutional Neural Networks/10. Batch Normalization.vtt
5.9 kB
7. Natural Language Processing (NLP)/6. Text Classification with CNNs.vtt
5.9 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/16. Stock Return Predictions using LSTMs (pt 2).vtt
5.8 kB
11. Deep Reinforcement Learning (Theory)/5. The Return.vtt
5.6 kB
7. Natural Language Processing (NLP)/3. Text Preprocessing.vtt
5.5 kB
9. Transfer Learning for Computer Vision/4. 2 Approaches to Transfer Learning.vtt
5.4 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/13. RNN for Image Classification (Theory).vtt
5.3 kB
1. Welcome/1. Introduction.vtt
5.2 kB
16. In-Depth Gradient Descent/2. Stochastic Gradient Descent.vtt
4.9 kB
5. Convolutional Neural Networks/8. CNN for CIFAR-10.vtt
4.9 kB
3. Machine Learning and Neurons/9. Saving and Loading a Model.vtt
4.4 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/4. Proof that the Linear Model Works.vtt
4.1 kB
12. Stock Trading Project with Deep Reinforcement Learning/9. Reinforcement Learning Stock Trader Discussion.vtt
4.0 kB
6. Recurrent Neural Networks, Time Series, and Sequence Data/14. RNN for Image Classification (Code).vtt
3.7 kB
18. Appendix FAQ/1. What is the Appendix.vtt
3.4 kB
18. Appendix FAQ/12. Bonus Where to get discount coupons and FREE deep learning material.vtt
3.0 kB
13. Advanced Tensorflow Usage/6. Using the TPU.html
1.6 kB
[DesireCourse.Net].url
51 Bytes
[CourseClub.Me].url
48 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>