搜索
[FTUForum.com] [UDEMY] Complete Data Science Training with Python for Data Analysis [FTU]
磁力链接/BT种子名称
[FTUForum.com] [UDEMY] Complete Data Science Training with Python for Data Analysis [FTU]
磁力链接/BT种子简介
种子哈希:
bdcf2933d59f4d0ed95a0ec7f904f79a4643f4b0
文件大小:
2.25G
已经下载:
899
次
下载速度:
极快
收录时间:
2021-04-23
最近下载:
2025-05-17
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:BDCF2933D59F4D0ED95A0EC7F904F79A4643F4B0
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
采精小
秒硬
形体训练
容器
小巨
自慰
illegal porno
美空模特
三上悠亚无修正
和动物
娜娜 丝袜
医美美羊羊
绿帽推特
tourist family 2025 tamil hd
羞耻公开
筱田优无修正
核弹流出
抢
过井穗乃果
眼镜
偷偷插入少妇
绝版收藏
校鸡
血欲
桂林
野战3p
里番软件
种付
推特肉便器
射进来
文件列表
1. Introduction to the Data Science in Python Bootcamp/3.1 scriptsLecture.zip.zip
323.0 MB
1. Introduction to the Data Science in Python Bootcamp/2. Introduction to the Course Instructor.m4v
58.3 MB
6. Introduction to Data Visualizations/6. Barplot.mp4
56.4 MB
4. Introduction to Pandas/6. Read in HTML Data.mp4
53.8 MB
13. Miscellaneous Lectures Information/5. Data Imputation.m4v
47.0 MB
1. Introduction to the Data Science in Python Bootcamp/6. Introduction to the Python Data Science Environment.mp4
42.3 MB
6. Introduction to Data Visualizations/8. Line Chart.mp4
38.9 MB
3. Introduction to Numpy/3. Numpy Operations.mp4
38.5 MB
8. Statistical Inference Relationship Between Variables/9. Conditions of Linear Regression-Check in Python.mp4
35.0 MB
7. Statistical Data Analysis-Basic/5. Grouping Summarizing Data by Categories.mp4
34.7 MB
8. Statistical Inference Relationship Between Variables/7. Linear Regression-Implementation in Python.mp4
31.6 MB
6. Introduction to Data Visualizations/5. Scatter Plot-Visualize the Relationship Between 2 Continuous Variables.mp4
31.3 MB
6. Introduction to Data Visualizations/3. Histograms-Visualize the Distribution of Continuous Numerical Variables.mp4
30.8 MB
10. Unsupervised Learning in Python/8. Hierarchical Clustering-practical.mp4
30.8 MB
5. Data Pre-ProcessingWrangling/12. Merging and Joining Data Frames.mp4
30.2 MB
8. Statistical Inference Relationship Between Variables/12. Logistic Regression.mp4
30.2 MB
11. Supervised Learning/5. RF-Classification.mp4
29.9 MB
11. Supervised Learning/2. Data Preparation for Supervised Learning.mp4
29.7 MB
8. Statistical Inference Relationship Between Variables/3. Test the Difference Between More Than Two Groups.mp4
29.7 MB
13. Miscellaneous Lectures Information/4. Naive Bayes Classification.m4v
29.5 MB
5. Data Pre-ProcessingWrangling/5. Subset and Index Data.mp4
29.4 MB
5. Data Pre-ProcessingWrangling/6. Basic Data Grouping Based on Qualitative Attributes.mp4
27.9 MB
7. Statistical Data Analysis-Basic/1. What is Statistical Data Analysis.mp4
26.5 MB
4. Introduction to Pandas/1. Data Structures in Python.mp4
26.3 MB
1. Introduction to the Data Science in Python Bootcamp/4. Introduction to the Python Data Science Tool.mp4
26.2 MB
11. Supervised Learning/1. What is This Section About.mp4
26.1 MB
8. Statistical Inference Relationship Between Variables/6. Linear Regression-Theory.mp4
26.1 MB
5. Data Pre-ProcessingWrangling/10. Rank and Sort Data.mp4
25.5 MB
5. Data Pre-ProcessingWrangling/8. Reshaping.mp4
25.4 MB
5. Data Pre-ProcessingWrangling/9. Pivoting.mp4
25.2 MB
11. Supervised Learning/3. Pointers on Evaluating the Accuracy of Classification and Regression Modelling.mp4
25.2 MB
5. Data Pre-ProcessingWrangling/11. Concatenate.mp4
24.9 MB
11. Supervised Learning/6. RF-Regression.mp4
24.8 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/1. Theory Behind ANN and DNN.mp4
23.7 MB
3. Introduction to Numpy/2. Create Numpy Arrays.mp4
21.9 MB
7. Statistical Data Analysis-Basic/2. Some Pointers on Collecting Data for Statistical Studies.mp4
21.9 MB
8. Statistical Inference Relationship Between Variables/5. Correlation Analysis.mp4
21.7 MB
6. Introduction to Data Visualizations/1. What is Data Visualization.mp4
21.7 MB
11. Supervised Learning/4. Using Logistic Regression as a Classification Model.mp4
21.6 MB
10. Unsupervised Learning in Python/3. KMeans-implementation on the iris data.mp4
20.5 MB
5. Data Pre-ProcessingWrangling/2. Removing NAsNo Values From Our Data.mp4
20.2 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/6. MLP with PCA on a Large Dataset.mp4
20.2 MB
10. Unsupervised Learning in Python/6. How Do We Select the Number of Clusters.mp4
20.0 MB
4. Introduction to Pandas/5. Reading in JSON Data.mp4
19.6 MB
11. Supervised Learning/10. knn-Classification.mp4
19.1 MB
8. Statistical Inference Relationship Between Variables/2. Test the Difference Between Two Groups.mp4
18.6 MB
1. Introduction to the Data Science in Python Bootcamp/1. What is Data Science.mp4
18.2 MB
7. Statistical Data Analysis-Basic/4. Explore the Quantitative Data Descriptive Statistics.mp4
18.2 MB
6. Introduction to Data Visualizations/2. Some Theoretical Principles Behind Data Visualization.mp4
17.4 MB
7. Statistical Data Analysis-Basic/9. Check for Normal Distribution.mp4
17.3 MB
3. Introduction to Numpy/4. Matrix Arithmetic and Linear Systems.mp4
16.6 MB
9. Machine Learning for Data Science/2. What is Machine Learning (ML) About Some Theoretical Pointers.mp4
16.5 MB
5. Data Pre-ProcessingWrangling/4. Drop ColumnRow.mp4
16.5 MB
4. Introduction to Pandas/3. Read in CSV Data Using Pandas.mp4
16.1 MB
11. Supervised Learning/12. Gradient Boosting-classification.mp4
15.8 MB
3. Introduction to Numpy/9. Numpy for Statistical Operation.mp4
15.7 MB
5. Data Pre-ProcessingWrangling/3. Basic Data Handling Starting with Conditional Data Selection.mp4
15.6 MB
3. Introduction to Numpy/6. Numpy for Basic Matrix Arithmetic.mp4
14.6 MB
7. Statistical Data Analysis-Basic/11. Confidence Interval-Theory.mp4
14.4 MB
9. Machine Learning for Data Science/1. How is Machine Learning Different from Statistical Data Analysis.mp4
14.4 MB
7. Statistical Data Analysis-Basic/12. Confidence Interval-Calculation.mp4
14.3 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/4. Multi-label classification with MLP.mp4
14.1 MB
6. Introduction to Data Visualizations/4. Boxplots-Visualize the Distribution of Continuous Numerical Variables.mp4
14.1 MB
8. Statistical Inference Relationship Between Variables/1. What is Hypothesis Testing.mp4
14.1 MB
6. Introduction to Data Visualizations/7. Pie Chart.mp4
13.4 MB
13. Miscellaneous Lectures Information/3. Read Data from a Database.mp4
12.9 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/8. Start with H20.mp4
12.7 MB
10. Unsupervised Learning in Python/5. KMeans Clustering with Real Data.mp4
12.7 MB
1. Introduction to the Data Science in Python Bootcamp/7. Some Miscellaneous IPython Usage Facts.mp4
12.6 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/11. H2O Deep Learning For Predictions.mp4
12.6 MB
8. Statistical Inference Relationship Between Variables/11. GLM Generalized Linear Model.mp4
12.4 MB
3. Introduction to Numpy/5. Numpy for Basic Vector Arithmetric.mp4
12.3 MB
7. Statistical Data Analysis-Basic/7. Common Terms Relating to Descriptive Statistics.mp4
12.2 MB
7. Statistical Data Analysis-Basic/6. Visualize Descriptive Statistics-Boxplots.mp4
12.1 MB
3. Introduction to Numpy/8. Solve Equations with Numpy.mp4
12.0 MB
4. Introduction to Pandas/4. Read in Excel Data Using Pandas.mp4
11.9 MB
11. Supervised Learning/13. Gradient Boosting-regression.mp4
11.4 MB
5. Data Pre-ProcessingWrangling/7. Crosstabulation.mp4
11.4 MB
10. Unsupervised Learning in Python/7. Hierarchical Clustering-theory.mp4
10.7 MB
1. Introduction to the Data Science in Python Bootcamp/5. For Mac Users.mp4
10.7 MB
11. Supervised Learning/9. Support Vector Regression.mp4
10.7 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/2. Perceptrons for Binary Classification.mp4
10.5 MB
7. Statistical Data Analysis-Basic/10. Standard Normal Distribution and Z-scores.mp4
10.3 MB
7. Statistical Data Analysis-Basic/8. Data Distribution- Normal Distribution.mp4
10.1 MB
10. Unsupervised Learning in Python/4. Quantifying KMeans Clustering Performance.mp4
10.0 MB
11. Supervised Learning/14. Voting Classifier.mp4
10.0 MB
8. Statistical Inference Relationship Between Variables/4. Explore the Relationship Between Two Quantitative Variables.mp4
9.9 MB
2. Introduction to Python Pre-Requisites for Data Science/2. Different Types of Data Used in Statistical ML Analysis.mp4
9.8 MB
8. Statistical Inference Relationship Between Variables/10. Polynomial Regression.mp4
9.7 MB
10. Unsupervised Learning in Python/10. Principal Component Analysis (PCA)-Practical Implementation.mp4
9.5 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/5. Regression with MLP.mp4
9.5 MB
3. Introduction to Numpy/7. Broadcasting with Numpy.mp4
9.4 MB
3. Introduction to Numpy/1. Numpy Introduction.mp4
9.1 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/3. Getting Started with ANN-binary classification.mp4
8.9 MB
11. Supervised Learning/11. knn-Regression.mp4
8.8 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/9. Default H2O Deep Learning Algorithm.mp4
8.6 MB
5. Data Pre-ProcessingWrangling/1. Rationale behind this section.mp4
8.5 MB
2. Introduction to Python Pre-Requisites for Data Science/4. Python Data Science Packages To Be Used.mp4
8.3 MB
2. Introduction to Python Pre-Requisites for Data Science/3. Different Types of Data Used Programatically.mp4
8.1 MB
1. Introduction to the Data Science in Python Bootcamp/8. Online iPython Interpreter.mp4
8.1 MB
11. Supervised Learning/7. SVM- Linear Classification.mp4
7.7 MB
11. Supervised Learning/15. Conclusions to Section 11.mp4
7.6 MB
13. Miscellaneous Lectures Information/2. Read in Data from Online CSV.mp4
7.0 MB
1. Introduction to the Data Science in Python Bootcamp/9. Conclusion to Section 1.mp4
6.8 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/10. Specify the Activation Function.mp4
6.5 MB
10. Unsupervised Learning in Python/1. Unsupervised Classification- Some Basic Ideas.mp4
6.5 MB
3. Introduction to Numpy/10. Conclusion to Section 3.mp4
6.5 MB
10. Unsupervised Learning in Python/9. Principal Component Analysis (PCA)-Theory.mp4
6.2 MB
6. Introduction to Data Visualizations/9. Conclusions to Section 6.mp4
6.1 MB
10. Unsupervised Learning in Python/11. Conclusions to Section 10.mp4
5.8 MB
4. Introduction to Pandas/7. Conclusion to Section 4.mp4
5.7 MB
5. Data Pre-ProcessingWrangling/13. Conclusion to Section 5.mp4
5.7 MB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/12. Conclusions to Section 12.mp4
5.4 MB
10. Unsupervised Learning in Python/2. KMeans-theory.mp4
5.4 MB
11. Supervised Learning/8. SVM- Non Linear Classification.mp4
5.4 MB
8. Statistical Inference Relationship Between Variables/13. Conclusions to Section 8.mp4
5.2 MB
2. Introduction to Python Pre-Requisites for Data Science/5. Conclusions to Section 2.mp4
5.1 MB
7. Statistical Data Analysis-Basic/13. Conclusions to Section 7.mp4
4.0 MB
8. Statistical Inference Relationship Between Variables/8. Conditions of Linear Regression.mp4
3.1 MB
6. Introduction to Data Visualizations/6. Barplot.vtt
22.9 kB
1. Introduction to the Data Science in Python Bootcamp/6. Introduction to the Python Data Science Environment.vtt
17.6 kB
3. Introduction to Numpy/3. Numpy Operations.vtt
15.3 kB
1. Introduction to the Data Science in Python Bootcamp/2. Introduction to the Course Instructor.vtt
13.8 kB
8. Statistical Inference Relationship Between Variables/9. Conditions of Linear Regression-Check in Python.vtt
12.9 kB
11. Supervised Learning/5. RF-Classification.vtt
12.5 kB
6. Introduction to Data Visualizations/5. Scatter Plot-Visualize the Relationship Between 2 Continuous Variables.vtt
12.5 kB
6. Introduction to Data Visualizations/8. Line Chart.vtt
12.3 kB
6. Introduction to Data Visualizations/3. Histograms-Visualize the Distribution of Continuous Numerical Variables.vtt
12.2 kB
8. Statistical Inference Relationship Between Variables/7. Linear Regression-Implementation in Python.vtt
11.8 kB
11. Supervised Learning/1. What is This Section About.vtt
11.8 kB
4. Introduction to Pandas/6. Read in HTML Data.vtt
11.4 kB
8. Statistical Inference Relationship Between Variables/12. Logistic Regression.vtt
11.4 kB
8. Statistical Inference Relationship Between Variables/3. Test the Difference Between More Than Two Groups.vtt
11.2 kB
5. Data Pre-ProcessingWrangling/12. Merging and Joining Data Frames.vtt
10.9 kB
11. Supervised Learning/3. Pointers on Evaluating the Accuracy of Classification and Regression Modelling.vtt
10.7 kB
7. Statistical Data Analysis-Basic/5. Grouping Summarizing Data by Categories.vtt
10.5 kB
1. Introduction to the Data Science in Python Bootcamp/4. Introduction to the Python Data Science Tool.vtt
10.4 kB
11. Supervised Learning/2. Data Preparation for Supervised Learning.vtt
10.3 kB
4. Introduction to Pandas/1. Data Structures in Python.vtt
10.3 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/1. Theory Behind ANN and DNN.vtt
10.1 kB
8. Statistical Inference Relationship Between Variables/6. Linear Regression-Theory.vtt
10.1 kB
6. Introduction to Data Visualizations/1. What is Data Visualization.vtt
10.0 kB
11. Supervised Learning/6. RF-Regression.vtt
10.0 kB
5. Data Pre-ProcessingWrangling/8. Reshaping.vtt
9.8 kB
7. Statistical Data Analysis-Basic/1. What is Statistical Data Analysis.vtt
9.8 kB
10. Unsupervised Learning in Python/8. Hierarchical Clustering-practical.vtt
9.8 kB
7. Statistical Data Analysis-Basic/2. Some Pointers on Collecting Data for Statistical Studies.vtt
9.3 kB
13. Miscellaneous Lectures Information/5. Data Imputation.vtt
9.2 kB
11. Supervised Learning/4. Using Logistic Regression as a Classification Model.vtt
8.9 kB
8. Statistical Inference Relationship Between Variables/5. Correlation Analysis.vtt
8.8 kB
5. Data Pre-ProcessingWrangling/9. Pivoting.vtt
8.6 kB
5. Data Pre-ProcessingWrangling/6. Basic Data Grouping Based on Qualitative Attributes.vtt
8.5 kB
11. Supervised Learning/10. knn-Classification.vtt
8.2 kB
5. Data Pre-ProcessingWrangling/11. Concatenate.vtt
8.2 kB
13. Miscellaneous Lectures Information/3. Read Data from a Database.vtt
8.0 kB
5. Data Pre-ProcessingWrangling/5. Subset and Index Data.vtt
8.0 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/6. MLP with PCA on a Large Dataset.vtt
7.8 kB
7. Statistical Data Analysis-Basic/4. Explore the Quantitative Data Descriptive Statistics.vtt
7.8 kB
10. Unsupervised Learning in Python/3. KMeans-implementation on the iris data.vtt
7.8 kB
8. Statistical Inference Relationship Between Variables/2. Test the Difference Between Two Groups.vtt
7.5 kB
5. Data Pre-ProcessingWrangling/10. Rank and Sort Data.vtt
7.5 kB
6. Introduction to Data Visualizations/2. Some Theoretical Principles Behind Data Visualization.vtt
7.3 kB
13. Miscellaneous Lectures Information/4. Naive Bayes Classification.vtt
7.0 kB
3. Introduction to Numpy/9. Numpy for Statistical Operation.vtt
6.9 kB
9. Machine Learning for Data Science/2. What is Machine Learning (ML) About Some Theoretical Pointers.vtt
6.7 kB
3. Introduction to Numpy/4. Matrix Arithmetic and Linear Systems.vtt
6.6 kB
5. Data Pre-ProcessingWrangling/2. Removing NAsNo Values From Our Data.vtt
6.5 kB
9. Machine Learning for Data Science/1. How is Machine Learning Different from Statistical Data Analysis.vtt
6.3 kB
11. Supervised Learning/12. Gradient Boosting-classification.vtt
6.2 kB
3. Introduction to Numpy/2. Create Numpy Arrays.vtt
6.1 kB
7. Statistical Data Analysis-Basic/11. Confidence Interval-Theory.vtt
6.0 kB
8. Statistical Inference Relationship Between Variables/1. What is Hypothesis Testing.vtt
6.0 kB
4. Introduction to Pandas/3. Read in CSV Data Using Pandas.vtt
5.9 kB
7. Statistical Data Analysis-Basic/12. Confidence Interval-Calculation.vtt
5.9 kB
7. Statistical Data Analysis-Basic/9. Check for Normal Distribution.vtt
5.8 kB
6. Introduction to Data Visualizations/7. Pie Chart.vtt
5.7 kB
7. Statistical Data Analysis-Basic/7. Common Terms Relating to Descriptive Statistics.vtt
5.7 kB
6. Introduction to Data Visualizations/4. Boxplots-Visualize the Distribution of Continuous Numerical Variables.vtt
5.6 kB
7. Statistical Data Analysis-Basic/6. Visualize Descriptive Statistics-Boxplots.vtt
5.4 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/11. H2O Deep Learning For Predictions.vtt
5.3 kB
8. Statistical Inference Relationship Between Variables/11. GLM Generalized Linear Model.vtt
5.3 kB
3. Introduction to Numpy/6. Numpy for Basic Matrix Arithmetic.vtt
5.3 kB
10. Unsupervised Learning in Python/7. Hierarchical Clustering-theory.vtt
5.1 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/4. Multi-label classification with MLP.vtt
4.9 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/2. Perceptrons for Binary Classification.vtt
4.8 kB
5. Data Pre-ProcessingWrangling/1. Rationale behind this section.vtt
4.7 kB
1. Introduction to the Data Science in Python Bootcamp/7. Some Miscellaneous IPython Usage Facts.vtt
4.7 kB
10. Unsupervised Learning in Python/5. KMeans Clustering with Real Data.vtt
4.6 kB
8. Statistical Inference Relationship Between Variables/4. Explore the Relationship Between Two Quantitative Variables.vtt
4.5 kB
10. Unsupervised Learning in Python/4. Quantifying KMeans Clustering Performance.vtt
4.5 kB
5. Data Pre-ProcessingWrangling/4. Drop ColumnRow.vtt
4.5 kB
11. Supervised Learning/9. Support Vector Regression.vtt
4.4 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/8. Start with H20.vtt
4.4 kB
10. Unsupervised Learning in Python/6. How Do We Select the Number of Clusters.vtt
4.3 kB
7. Statistical Data Analysis-Basic/10. Standard Normal Distribution and Z-scores.vtt
4.3 kB
3. Introduction to Numpy/8. Solve Equations with Numpy.vtt
4.3 kB
10. Unsupervised Learning in Python/10. Principal Component Analysis (PCA)-Practical Implementation.vtt
4.2 kB
5. Data Pre-ProcessingWrangling/3. Basic Data Handling Starting with Conditional Data Selection.vtt
4.2 kB
1. Introduction to the Data Science in Python Bootcamp/1. What is Data Science.vtt
4.1 kB
11. Supervised Learning/11. knn-Regression.vtt
4.0 kB
7. Statistical Data Analysis-Basic/8. Data Distribution- Normal Distribution.vtt
4.0 kB
1. Introduction to the Data Science in Python Bootcamp/5. For Mac Users.vtt
4.0 kB
13. Miscellaneous Lectures Information/2. Read in Data from Online CSV.vtt
4.0 kB
5. Data Pre-ProcessingWrangling/7. Crosstabulation.vtt
3.9 kB
3. Introduction to Numpy/1. Numpy Introduction.vtt
3.9 kB
2. Introduction to Python Pre-Requisites for Data Science/4. Python Data Science Packages To Be Used.vtt
3.9 kB
3. Introduction to Numpy/5. Numpy for Basic Vector Arithmetric.vtt
3.9 kB
3. Introduction to Numpy/7. Broadcasting with Numpy.vtt
3.9 kB
4. Introduction to Pandas/4. Read in Excel Data Using Pandas.vtt
3.9 kB
11. Supervised Learning/14. Voting Classifier.vtt
3.9 kB
8. Statistical Inference Relationship Between Variables/10. Polynomial Regression.vtt
3.8 kB
11. Supervised Learning/13. Gradient Boosting-regression.vtt
3.8 kB
2. Introduction to Python Pre-Requisites for Data Science/2. Different Types of Data Used in Statistical ML Analysis.vtt
3.7 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/5. Regression with MLP.vtt
3.6 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/3. Getting Started with ANN-binary classification.vtt
3.6 kB
1. Introduction to the Data Science in Python Bootcamp/8. Online iPython Interpreter.vtt
3.5 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/9. Default H2O Deep Learning Algorithm.vtt
3.4 kB
11. Supervised Learning/7. SVM- Linear Classification.vtt
3.3 kB
4. Introduction to Pandas/5. Reading in JSON Data.vtt
3.1 kB
1. Introduction to the Data Science in Python Bootcamp/9. Conclusion to Section 1.vtt
3.1 kB
2. Introduction to Python Pre-Requisites for Data Science/3. Different Types of Data Used Programatically.vtt
3.1 kB
10. Unsupervised Learning in Python/9. Principal Component Analysis (PCA)-Theory.vtt
3.0 kB
11. Supervised Learning/15. Conclusions to Section 11.vtt
3.0 kB
3. Introduction to Numpy/10. Conclusion to Section 3.vtt
2.6 kB
10. Unsupervised Learning in Python/2. KMeans-theory.vtt
2.6 kB
10. Unsupervised Learning in Python/11. Conclusions to Section 10.vtt
2.5 kB
2. Introduction to Python Pre-Requisites for Data Science/5. Conclusions to Section 2.vtt
2.5 kB
11. Supervised Learning/8. SVM- Non Linear Classification.vtt
2.4 kB
4. Introduction to Pandas/7. Conclusion to Section 4.vtt
2.3 kB
6. Introduction to Data Visualizations/9. Conclusions to Section 6.vtt
2.3 kB
5. Data Pre-ProcessingWrangling/13. Conclusion to Section 5.vtt
2.3 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/10. Specify the Activation Function.vtt
2.2 kB
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/12. Conclusions to Section 12.vtt
2.2 kB
8. Statistical Inference Relationship Between Variables/13. Conclusions to Section 8.vtt
2.1 kB
8. Statistical Inference Relationship Between Variables/8. Conditions of Linear Regression.vtt
1.9 kB
10. Unsupervised Learning in Python/1. Unsupervised Classification- Some Basic Ideas.vtt
1.9 kB
7. Statistical Data Analysis-Basic/13. Conclusions to Section 7.vtt
1.6 kB
7. Statistical Data Analysis-Basic/3. Some Pointers on Exploring Quantitative Data.html
517 Bytes
2. Introduction to Python Pre-Requisites for Data Science/1. Rationale Behind This Section.html
429 Bytes
0. Websites you may like/1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url
328 Bytes
0. Websites you may like/5. (Discuss.FTUForum.com) FTU Discussion Forum.url
294 Bytes
0. Websites you may like/2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url
286 Bytes
4. Introduction to Pandas/2. Read in Data.html
246 Bytes
0. Websites you may like/4. (FTUApps.com) Download Cracked Developers Applications For Free.url
239 Bytes
0. Websites you may like/How you can help Team-FTU.txt
237 Bytes
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/7. Start With Deep Neural Network (DNN).html
229 Bytes
0. Websites you may like/3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url
163 Bytes
11. Supervised Learning/16. Section 11 Quiz.html
163 Bytes
12. Artificial Neural Networks (ANN) and Deep Learning (DL)/13. Section 12 Quiz.html
163 Bytes
3. Introduction to Numpy/11. Section 3 Quiz.html
163 Bytes
8. Statistical Inference Relationship Between Variables/14. Section 8 Quiz.html
163 Bytes
13. Miscellaneous Lectures Information/1. Data For This Section.html
137 Bytes
1. Introduction to the Data Science in Python Bootcamp/3. Data For the Course.html
98 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>