搜索
Udemy - MLOps Bootcamp Mastering AI Operations for Success - AIOps (7.2024)
磁力链接/BT种子名称
Udemy - MLOps Bootcamp Mastering AI Operations for Success - AIOps (7.2024)
磁力链接/BT种子简介
种子哈希:
bbf409f2ab53f92f3b88d4eaf0d0bd2c74d25bd3
文件大小:
13.84G
已经下载:
104
次
下载速度:
极快
收录时间:
2025-07-19
最近下载:
2025-08-06
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:BBF409F2AB53F92F3B88D4EAF0D0BD2C74D25BD3
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
哆哔涩漫
呦乐园
萝莉岛
最近搜索
wondershare uniconverter
大阴蒂
021815-810
越南极品美女
webrip.2024.
猪八戒
fc2ppv-+
fc2-ppv-3205298
kiss
oneplusone+kitchen
九条
alien: covenant - advent
dolly+rud
vstavaná+rúra
那根所有权
男娘口
羚羊
摄影师 车模
良家男
真实泄密
【360稀缺】
やのさき
女友家里
лето
碰
위험
包养学生
玻璃棒
midv+-+472
初次
文件列表
11 - Lnux Operating System for DevOps and Data Scientists/004 Basic Linux Commands of Linux.mp4
594.3 MB
21 - Additional Learning on Topic of MLOps/003 Kubernetes 101 Part 2.mp4
448.8 MB
21 - Additional Learning on Topic of MLOps/001 MLOps with MLFlow in 1 Hour.mp4
435.5 MB
17 - Monitor the ML System with WhyLogs/003 Whylogs - Drift Detection, Input, Output, Bias Monitoring.mp4
403.4 MB
21 - Additional Learning on Topic of MLOps/005 Bonus Understanding Transformer Architecture.mp4
402.3 MB
09 - Build MLApps using Streamlit/003 Building the ML Model with Streamlit.mp4
346.0 MB
21 - Additional Learning on Topic of MLOps/004 Generative AI and Prompt Engineering Introduction.mp4
208.0 MB
05 - Packaging the ML Models/002 Typical Experimentation with Dataset.mp4
185.4 MB
05 - Packaging the ML Models/009 Data Preprocessing part 1.mp4
175.6 MB
05 - Packaging the ML Models/007 Create Config Module.mp4
174.2 MB
21 - Additional Learning on Topic of MLOps/002 Kubernetes 101 Part 1.mp4
167.0 MB
06 - Mlflow - Manage ML experiments/008 MLFlow Project.mp4
159.5 MB
15 - Deploy Applications with Docker Compose/002 Hands On - Docker Compose with Flask Application.mp4
156.0 MB
12 - Working with CI CD Tool Jenkins/004 Deploy as API with FASTAPI.mp4
148.3 MB
06 - Mlflow - Manage ML experiments/006 Machine Learning Experiement on MLFlow.mp4
147.0 MB
07 - Docker for Machine Learning/002 Introduction to Docker.mp4
144.3 MB
01 - Introduction to Complete MLOps Bootcamp/003 The Stages of MLOps.mp4
142.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/024 Advanced Functions in Pandas DataFrame.mp4
142.9 MB
15 - Deploy Applications with Docker Compose/003 Hands On - Docker Compose Prometheus Grafana.mp4
140.3 MB
12 - Working with CI CD Tool Jenkins/011 Configure Github Repo - Webhook - Jenkins Credentials.mp4
140.1 MB
05 - Packaging the ML Models/026 Packagiing the ML Model & testing.mp4
138.9 MB
11 - Lnux Operating System for DevOps and Data Scientists/002 Linux Features & Bash.mp4
138.8 MB
12 - Working with CI CD Tool Jenkins/019 Create CI CT CD Pipeline - Github Dockerhub.mp4
138.2 MB
07 - Docker for Machine Learning/004 Working with Docker.mp4
136.7 MB
06 - Mlflow - Manage ML experiments/004 Basic Mlflow tutorial.mp4
135.7 MB
16 - Continuous Monitoring of Machine Learning Application/002 Hands On Monitoring of ML Application using Prometheus.mp4
132.2 MB
06 - Mlflow - Manage ML experiments/011 Log Model Metrics in MySql.mp4
130.7 MB
10 - Build MLApps using Flask/002 Hands On Learning of Flask Library.mp4
129.9 MB
08 - Build MLApps using FastAPI/004 Crash course on FastAPI.mp4
128.2 MB
05 - Packaging the ML Models/004 Challenges in Working inside the Jupyter Notebook.mp4
121.2 MB
14 - Continuous Monitoring with Prometheus/006 Installation of Prometheus.mp4
119.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/015 Broadcasting on Numpy Arrays.mp4
118.5 MB
09 - Build MLApps using Streamlit/002 Hands On Working with Streamlit.mp4
112.2 MB
05 - Packaging the ML Models/005 Understanding the Modular Programming.mp4
111.7 MB
14 - Continuous Monitoring with Prometheus/014 Monitor the FastAPI Application using Prometheus.mp4
109.8 MB
10 - Build MLApps using Flask/003 Build ML Model App with Flask.mp4
109.2 MB
06 - Mlflow - Manage ML experiments/009 MLFlow Models.mp4
107.7 MB
12 - Working with CI CD Tool Jenkins/017 Setup Email Notification with Gmail.mp4
106.0 MB
05 - Packaging the ML Models/006 Creating Folder Hierarchy for ML Project.mp4
105.6 MB
12 - Working with CI CD Tool Jenkins/008 Test Locally using Docker Containers.mp4
105.4 MB
14 - Continuous Monitoring with Prometheus/017 Trigger Alerts with Grafana.mp4
105.2 MB
12 - Working with CI CD Tool Jenkins/015 Test Github Webhook with Jenkins.mp4
105.1 MB
05 - Packaging the ML Models/011 sklearn pipeline.mp4
104.1 MB
12 - Working with CI CD Tool Jenkins/005 Test FastAPI App.mp4
101.5 MB
07 - Docker for Machine Learning/008 Dockerize the ML Model.mp4
100.1 MB
03 - Git and Github Fundamentals for MLOps/008 Git Branch.mp4
98.4 MB
04 - Crash Course on YAML/001 YAML Crash Course.mp4
96.3 MB
06 - Mlflow - Manage ML experiments/007 Create ML Model for Loan Prediction.mp4
95.8 MB
14 - Continuous Monitoring with Prometheus/012 Monitor the Linux Server with Node Exporter.mp4
94.6 MB
07 - Docker for Machine Learning/006 Working with Dockerfile.mp4
93.9 MB
12 - Working with CI CD Tool Jenkins/001 Introduction to Jenkins.mp4
91.6 MB
05 - Packaging the ML Models/025 Create setup.py.mp4
88.6 MB
12 - Working with CI CD Tool Jenkins/009 Installation of Jenkins on AWS EC2 Instances.mp4
88.3 MB
01 - Introduction to Complete MLOps Bootcamp/001 What and Why MLOps.mp4
86.9 MB
06 - Mlflow - Manage ML experiments/012 Register the Model & Serve the Model.mp4
85.6 MB
07 - Docker for Machine Learning/005 Running the Docker Container.mp4
85.4 MB
05 - Packaging the ML Models/012 Training Pipeline.mp4
83.9 MB
06 - Mlflow - Manage ML experiments/003 Logging Functions of Mlflow Tracking.mp4
81.4 MB
14 - Continuous Monitoring with Prometheus/009 Prometheus Configuration file.mp4
78.3 MB
08 - Build MLApps using FastAPI/002 How REST API Works.mp4
76.4 MB
03 - Git and Github Fundamentals for MLOps/010 Merging.mp4
75.5 MB
08 - Build MLApps using FastAPI/006 Deploying the Machine Learning Model with FastAPI.mp4
74.3 MB
03 - Git and Github Fundamentals for MLOps/015 3 way merge.mp4
74.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/042 Univariate & Bivariate Plots - Continuous Data.mp4
73.0 MB
07 - Docker for Machine Learning/009 Packaging the training code in Docker Environment & Summary.mp4
71.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/022 Combining the DataFrames.mp4
70.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/028 Preliminary Analysis on DataFrame.mp4
70.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/041 Exploring the data.mp4
69.6 MB
12 - Working with CI CD Tool Jenkins/016 Installation of Docker Plugin & System Readiness.mp4
67.9 MB
17 - Monitor the ML System with WhyLogs/004 WhyLogs - Constraints and Drift Reports.mp4
67.8 MB
14 - Continuous Monitoring with Prometheus/004 Architecture of Prometheus.mp4
66.6 MB
14 - Continuous Monitoring with Prometheus/010 Exploring the Basic Querying Prometheus.mp4
66.3 MB
03 - Git and Github Fundamentals for MLOps/007 Git Workflow - Local Repo.mp4
65.7 MB
05 - Packaging the ML Models/008 Data Handling Module.mp4
64.4 MB
05 - Packaging the ML Models/022 Running Pytest.mp4
62.9 MB
19 - Reference Getting Started with AWS/014 Launch EC2 instance & SSH into EC2 Instances.mp4
62.8 MB
02 - Python for MLOps/012 Collection - Strings.mp4
61.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/023 Other Functions on Pandas DataFrame.mp4
60.9 MB
03 - Git and Github Fundamentals for MLOps/002 Getting Started with git.mp4
60.0 MB
06 - Mlflow - Manage ML experiments/001 Introduction to Mlflow.mp4
59.8 MB
14 - Continuous Monitoring with Prometheus/015 Monitor All EndPoints using Prometheus.mp4
59.6 MB
19 - Reference Getting Started with AWS/007 IAM Policy generator & attachment.mp4
58.8 MB
03 - Git and Github Fundamentals for MLOps/014 Cloning and Delete Branches.mp4
58.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/021 Working with Data in Pandas DataFrame.mp4
58.4 MB
03 - Git and Github Fundamentals for MLOps/009 Switching the Branches.mp4
57.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/031 Introduction to Data Visualization.mp4
57.5 MB
03 - Git and Github Fundamentals for MLOps/013 Working with Remote Repositories.mp4
57.1 MB
12 - Working with CI CD Tool Jenkins/020 Create CI CT CD Pipeline - Training.mp4
56.9 MB
03 - Git and Github Fundamentals for MLOps/011 Checking Out Commits.mp4
56.8 MB
02 - Python for MLOps/011 Operators in Python Programming Language.mp4
55.0 MB
12 - Working with CI CD Tool Jenkins/003 Prepare and Package ML Model.mp4
53.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/029 Null values in the Dataframe.mp4
53.1 MB
03 - Git and Github Fundamentals for MLOps/005 Getting Started with Local Repo.mp4
52.9 MB
19 - Reference Getting Started with AWS/004 Create IAM Account and Account Alias.mp4
52.4 MB
06 - Mlflow - Manage ML experiments/005 Exploration of mlflow.mp4
52.3 MB
13 - Monitoring and Debugging of ML System/005 Functional Level Monitoring.mp4
51.8 MB
14 - Continuous Monitoring with Prometheus/001 Introduction to Continuous Monitoring.mp4
50.3 MB
08 - Build MLApps using FastAPI/001 What is API, REST and REST API.mp4
50.1 MB
05 - Packaging the ML Models/001 Introduction to Packaging the ML Models.mp4
49.7 MB
17 - Monitor the ML System with WhyLogs/001 Introduction to ML Monitoring.mp4
49.0 MB
02 - Python for MLOps/010 Python Literals - Hands On.mp4
48.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/027 Loading the Large Dataset for Working.mp4
47.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/007 Array Creation Functions.mp4
47.3 MB
14 - Continuous Monitoring with Prometheus/016 Create Visualization with Grafana.mp4
46.4 MB
05 - Packaging the ML Models/013 Prediction Pipeline.mp4
46.2 MB
19 - Reference Getting Started with AWS/009 S3 Bucket and Storage Classes.mp4
46.0 MB
12 - Working with CI CD Tool Jenkins/022 Create CI CT CD Pipeline - Deployment.mp4
45.6 MB
12 - Working with CI CD Tool Jenkins/021 Create CI CT CD Pipeline - Testing.mp4
45.3 MB
13 - Monitoring and Debugging of ML System/003 Why Monitoring Machine Learning Models is Difficult.mp4
45.3 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/038 Scatter Plot hands on.mp4
45.2 MB
02 - Python for MLOps/027 File Handling in Python.mp4
45.1 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/018 Working with Pandas Series.mp4
45.1 MB
05 - Packaging the ML Models/019 Requirements txt file.mp4
44.7 MB
05 - Packaging the ML Models/021 Create Python tests.mp4
44.5 MB
06 - Mlflow - Manage ML experiments/010 Setting Up MySql Database Locally.mp4
43.6 MB
02 - Python for MLOps/024 Functions.mp4
42.9 MB
05 - Packaging the ML Models/027 Summary.mp4
42.7 MB
12 - Working with CI CD Tool Jenkins/010 Installation of Docker in EC2 Instance.mp4
42.6 MB
19 - Reference Getting Started with AWS/002 Create AWS Account.mp4
40.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/011 Shape Modification of Arrays.mp4
40.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/043 Plot - Categorical Data.mp4
40.7 MB
14 - Continuous Monitoring with Prometheus/008 Installation of Grafana.mp4
39.8 MB
02 - Python for MLOps/014 Data Structures - List.mp4
38.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/034 Line Plots Hands On.mp4
38.4 MB
03 - Git and Github Fundamentals for MLOps/001 Introduction to Version Control Systems.mp4
36.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/001 Introduction to Numpy Library.mp4
36.3 MB
02 - Python for MLOps/022 Control Statements - Looping Statements.mp4
36.2 MB
06 - Mlflow - Manage ML experiments/002 Getting System Ready with mlflow.mp4
36.1 MB
03 - Git and Github Fundamentals for MLOps/012 Git Hosting Services.mp4
35.7 MB
19 - Reference Getting Started with AWS/012 Version Enablement in S3.mp4
35.3 MB
13 - Monitoring and Debugging of ML System/006 Model Drift.mp4
35.3 MB
08 - Build MLApps using FastAPI/003 What is FastAPI.mp4
33.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/036 Plot Adjustment Hands On.mp4
33.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/020 Dataframes in Pandas.mp4
33.6 MB
19 - Reference Getting Started with AWS/013 Introduction EC2 instances.mp4
33.5 MB
16 - Continuous Monitoring of Machine Learning Application/001 Architecture of ML Application Monitoring.mp4
33.0 MB
02 - Python for MLOps/005 Hello World - Python.mp4
32.6 MB
12 - Working with CI CD Tool Jenkins/024 Summary.mp4
32.5 MB
19 - Reference Getting Started with AWS/003 Setting up MFA on Root Account.mp4
32.2 MB
05 - Packaging the ML Models/023 Create Manifest file.mp4
31.5 MB
19 - Reference Getting Started with AWS/005 Setup CLI with Credentials.mp4
31.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/044 Advanced Plots in Seaborn.mp4
31.1 MB
07 - Docker for Machine Learning/003 Installation of Docker Desktop.mp4
31.0 MB
02 - Python for MLOps/026 Classes in Python.mp4
30.7 MB
13 - Monitoring and Debugging of ML System/001 Why Monitoring Machine Learning Models is Important.mp4
29.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/032 Matplotlib Basics.mp4
29.5 MB
05 - Packaging the ML Models/018 Perform Training and Predictions.mp4
29.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/013 Relational Operators & Aggregation Functions on Numpy Arrays.mp4
29.1 MB
19 - Reference Getting Started with AWS/011 Creation of S3 Bucket from CLI.mp4
29.1 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/006 Array Indexing and Slicing.mp4
28.6 MB
02 - Python for MLOps/009 Variables - Comments - Markdown Cells - Hands On.mp4
28.3 MB
03 - Git and Github Fundamentals for MLOps/003 Local Repo vs Remote Repo.mp4
28.1 MB
11 - Lnux Operating System for DevOps and Data Scientists/003 How to Launch EC2 Instances (Quick Refresh).mp4
28.0 MB
19 - Reference Getting Started with AWS/010 Creation of S3 Bucket from Console.mp4
27.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/035 Adjusting the Plots.mp4
27.8 MB
03 - Git and Github Fundamentals for MLOps/006 Concept of Working Directory - Staging Area - Commit.mp4
27.2 MB
03 - Git and Github Fundamentals for MLOps/004 Git Configurations.mp4
27.2 MB
02 - Python for MLOps/013 Python String - Builtin Functions - Hands On.mp4
26.2 MB
05 - Packaging the ML Models/014 Fixes on Python Scripts.mp4
26.2 MB
13 - Monitoring and Debugging of ML System/004 Challenge - Who Owns what.mp4
26.0 MB
14 - Continuous Monitoring with Prometheus/013 Monitor the Client Application using Prometheus.mp4
25.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/030 Data Cleaning.mp4
25.5 MB
05 - Packaging the ML Models/010 Data Preprocessing part 2.mp4
24.3 MB
12 - Working with CI CD Tool Jenkins/023 Perform Test of Pipeline.mp4
24.3 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/045 Which Plot to use.mp4
23.6 MB
07 - Docker for Machine Learning/007 Push the Docker Image to DockerHub.mp4
23.2 MB
02 - Python for MLOps/006 Jupyter Lab Quick Tour.mp4
22.8 MB
02 - Python for MLOps/015 Data Structures - Tuples.mp4
22.8 MB
12 - Working with CI CD Tool Jenkins/006 Create Dockerfile.mp4
22.4 MB
14 - Continuous Monitoring with Prometheus/011 Monitor the Infrastructure with Prometheus.mp4
21.3 MB
02 - Python for MLOps/017 Data Structures - Sets.mp4
20.9 MB
02 - Python for MLOps/021 Control Statements - Conditional Statements in Python.mp4
20.8 MB
09 - Build MLApps using Streamlit/001 Introduction to Streamit.mp4
19.6 MB
08 - Build MLApps using FastAPI/005 Data Validation with Pydantic.mp4
19.5 MB
05 - Packaging the ML Models/017 No module named prediction_model - fix.mp4
19.5 MB
07 - Docker for Machine Learning/001 Docker for Machine Learning.mp4
19.0 MB
05 - Packaging the ML Models/016 Add Python Path to Windows.mp4
18.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/026 Accessing Google Colab.mp4
18.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/016 Summary of Numpy Library Journey.mp4
18.4 MB
12 - Working with CI CD Tool Jenkins/014 Create your first First Jenkins Project.mp4
18.3 MB
05 - Packaging the ML Models/003 Model fit and generate Predictions.mp4
17.9 MB
18 - Post Productionizing ML Models/008 AB Testing.mp4
17.8 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/008 Copy Arrays.mp4
17.7 MB
12 - Working with CI CD Tool Jenkins/012 Introduction to Jenkins FreeStyle Projects and Pipeline Jobs.mp4
17.2 MB
02 - Python for MLOps/019 Reading the Input from Keyboard.mp4
17.1 MB
19 - Reference Getting Started with AWS/006 IAM Policy.mp4
16.4 MB
02 - Python for MLOps/016 Data Structures - Dictionary.mp4
15.8 MB
02 - Python for MLOps/020 String Formatting.mp4
15.6 MB
02 - Python for MLOps/003 Introduction to Python Programming.mp4
15.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/009 Mathematical Operation on Numpy Arrays.mp4
15.5 MB
02 - Python for MLOps/023 List comprehension.mp4
15.2 MB
05 - Packaging the ML Models/020 Testing the New Virtual Environments.mp4
15.1 MB
05 - Packaging the ML Models/015 Add Python Path to MacOS.mp4
15.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/040 Introduction to Seaborn.mp4
14.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/004 Creation of Array Object - np.array().mp4
14.4 MB
02 - Python for MLOps/025 Modules in Python.mp4
14.3 MB
15 - Deploy Applications with Docker Compose/001 Introduction to Docker Compose.mp4
13.9 MB
14 - Continuous Monitoring with Prometheus/005 Metric Types of Prometheus.mp4
13.8 MB
02 - Python for MLOps/004 Install Anaconda.mp4
13.8 MB
17 - Monitor the ML System with WhyLogs/005 Summary.mp4
12.9 MB
02 - Python for MLOps/018 Explicit and Implicit Casting in Python Programming.mp4
12.9 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/003 Import Numpy & Access help.mp4
12.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/002 Basics of numpy array object.mp4
12.5 MB
13 - Monitoring and Debugging of ML System/007 Operational Level Monitoring.mp4
12.3 MB
17 - Monitor the ML System with WhyLogs/002 Setting Up WhyLabs.mp4
12.2 MB
18 - Post Productionizing ML Models/001 Post-Productionalizing ML Models - What Next.mp4
12.0 MB
03 - Git and Github Fundamentals for MLOps/016 Summary.mp4
11.8 MB
14 - Continuous Monitoring with Prometheus/002 Use case on Continuous Monitoring.mp4
11.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/012 np.arange().mp4
11.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/039 Historgram Plot.mp4
11.4 MB
13 - Monitoring and Debugging of ML System/002 What is Monitoring of ML models & When to Update Model in Production.mp4
11.1 MB
18 - Post Productionizing ML Models/007 How to Mitigate Risk of Model Attacks.mp4
10.9 MB
05 - Packaging the ML Models/024 Create Version File.mp4
10.7 MB
14 - Continuous Monitoring with Prometheus/003 Introduction to Prometheus.mp4
10.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/005 Attributes of Numpy Array.mp4
9.5 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/025 Introduction to EDA.mp4
9.5 MB
06 - Mlflow - Manage ML experiments/013 Summary.mp4
9.0 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/010 Linear Algebra Functions in Numpy.mp4
8.9 MB
02 - Python for MLOps/029 Libraries in Python.mp4
8.9 MB
13 - Monitoring and Debugging of ML System/008 Tools and Best Practices of Machine Learning Model Monitoring.mp4
8.7 MB
12 - Working with CI CD Tool Jenkins/002 How do we Use Jenkins in MLOps.mp4
8.6 MB
10 - Build MLApps using Flask/001 What is Flask.mp4
8.6 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/017 Introduction to Pandas.mp4
8.5 MB
02 - Python for MLOps/028 Working with Python Scripts.mp4
7.8 MB
12 - Working with CI CD Tool Jenkins/007 Exposing the Application Port as per Dockerfile.mp4
7.8 MB
12 - Working with CI CD Tool Jenkins/018 Introduction to CI CT CD Pipeline.mp4
7.5 MB
12 - Working with CI CD Tool Jenkins/013 Exploration of Jenkins UI.mp4
7.5 MB
18 - Post Productionizing ML Models/003 Adversarial Attack.mp4
7.4 MB
18 - Post Productionizing ML Models/009 Future of MLOps.mp4
7.4 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/037 Scatter Plot.mp4
7.3 MB
19 - Reference Getting Started with AWS/015 Clean Up Activity.mp4
7.3 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/019 Mathematical Operation on Pandas Series.mp4
7.2 MB
02 - Python for MLOps/007 Variables in Python.mp4
6.4 MB
18 - Post Productionizing ML Models/002 Model Security.mp4
6.2 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/014 Boolean Masking.mp4
5.7 MB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/033 Types of Plot - Line plot.mp4
5.7 MB
02 - Python for MLOps/001 About the Section.mp4
5.4 MB
19 - Reference Getting Started with AWS/001 What do we cover in this section.mp4
4.4 MB
18 - Post Productionizing ML Models/005 Distributed Denial of Service Attack (DDOS).mp4
4.3 MB
14 - Continuous Monitoring with Prometheus/007 Introduction Grafana.mp4
4.1 MB
19 - Reference Getting Started with AWS/008 Delete the IAM User.mp4
4.0 MB
18 - Post Productionizing ML Models/006 Data Privacy Attack.mp4
4.0 MB
11 - Lnux Operating System for DevOps and Data Scientists/001 Agenda of this section.mp4
3.5 MB
18 - Post Productionizing ML Models/004 Data Poisoning Attack.mp4
2.2 MB
11 - Lnux Operating System for DevOps and Data Scientists/004 Basic Linux Commands of Linux.srt
142.3 kB
21 - Additional Learning on Topic of MLOps/004 Generative AI and Prompt Engineering Introduction.srt
100.4 kB
21 - Additional Learning on Topic of MLOps/005 Bonus Understanding Transformer Architecture.srt
72.7 kB
21 - Additional Learning on Topic of MLOps/001 MLOps with MLFlow in 1 Hour.srt
71.1 kB
17 - Monitor the ML System with WhyLogs/003 Whylogs - Drift Detection, Input, Output, Bias Monitoring.srt
66.3 kB
21 - Additional Learning on Topic of MLOps/002 Kubernetes 101 Part 1.srt
65.9 kB
21 - Additional Learning on Topic of MLOps/003 Kubernetes 101 Part 2.srt
49.0 kB
09 - Build MLApps using Streamlit/003 Building the ML Model with Streamlit.srt
49.0 kB
05 - Packaging the ML Models/002 Typical Experimentation with Dataset.srt
38.8 kB
07 - Docker for Machine Learning/002 Introduction to Docker.srt
35.0 kB
05 - Packaging the ML Models/009 Data Preprocessing part 1.srt
34.2 kB
05 - Packaging the ML Models/004 Challenges in Working inside the Jupyter Notebook.srt
32.4 kB
08 - Build MLApps using FastAPI/004 Crash course on FastAPI.srt
32.2 kB
04 - Crash Course on YAML/001 YAML Crash Course.srt
30.8 kB
05 - Packaging the ML Models/007 Create Config Module.srt
30.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/024 Advanced Functions in Pandas DataFrame.srt
30.3 kB
10 - Build MLApps using Flask/002 Hands On Learning of Flask Library.srt
29.6 kB
15 - Deploy Applications with Docker Compose/002 Hands On - Docker Compose with Flask Application.srt
29.5 kB
06 - Mlflow - Manage ML experiments/008 MLFlow Project.srt
29.1 kB
11 - Lnux Operating System for DevOps and Data Scientists/002 Linux Features & Bash.srt
27.6 kB
12 - Working with CI CD Tool Jenkins/011 Configure Github Repo - Webhook - Jenkins Credentials.srt
27.2 kB
06 - Mlflow - Manage ML experiments/006 Machine Learning Experiement on MLFlow.srt
27.0 kB
12 - Working with CI CD Tool Jenkins/004 Deploy as API with FASTAPI.srt
26.8 kB
09 - Build MLApps using Streamlit/002 Hands On Working with Streamlit.srt
26.7 kB
06 - Mlflow - Manage ML experiments/004 Basic Mlflow tutorial.srt
26.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/015 Broadcasting on Numpy Arrays.srt
25.9 kB
05 - Packaging the ML Models/005 Understanding the Modular Programming.srt
25.2 kB
06 - Mlflow - Manage ML experiments/012 Register the Model & Serve the Model.srt
25.2 kB
07 - Docker for Machine Learning/004 Working with Docker.srt
25.1 kB
06 - Mlflow - Manage ML experiments/011 Log Model Metrics in MySql.srt
24.1 kB
05 - Packaging the ML Models/006 Creating Folder Hierarchy for ML Project.srt
23.7 kB
14 - Continuous Monitoring with Prometheus/016 Create Visualization with Grafana.srt
23.6 kB
05 - Packaging the ML Models/026 Packagiing the ML Model & testing.srt
23.0 kB
06 - Mlflow - Manage ML experiments/009 MLFlow Models.srt
22.5 kB
12 - Working with CI CD Tool Jenkins/019 Create CI CT CD Pipeline - Github Dockerhub.srt
21.6 kB
15 - Deploy Applications with Docker Compose/003 Hands On - Docker Compose Prometheus Grafana.srt
21.6 kB
12 - Working with CI CD Tool Jenkins/015 Test Github Webhook with Jenkins.srt
21.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/028 Preliminary Analysis on DataFrame.srt
21.0 kB
12 - Working with CI CD Tool Jenkins/001 Introduction to Jenkins.srt
20.7 kB
14 - Continuous Monitoring with Prometheus/006 Installation of Prometheus.srt
20.6 kB
16 - Continuous Monitoring of Machine Learning Application/002 Hands On Monitoring of ML Application using Prometheus.srt
20.6 kB
02 - Python for MLOps/002 Python Quiz.html
20.0 kB
05 - Packaging the ML Models/021 Create Python tests.srt
19.4 kB
19 - Reference Getting Started with AWS/009 S3 Bucket and Storage Classes.srt
19.0 kB
14 - Continuous Monitoring with Prometheus/017 Trigger Alerts with Grafana.srt
18.5 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/020 Dataframes in Pandas.srt
18.4 kB
12 - Working with CI CD Tool Jenkins/017 Setup Email Notification with Gmail.srt
17.9 kB
03 - Git and Github Fundamentals for MLOps/008 Git Branch.srt
17.4 kB
13 - Monitoring and Debugging of ML System/005 Functional Level Monitoring.srt
17.4 kB
08 - Build MLApps using FastAPI/002 How REST API Works.srt
17.3 kB
10 - Build MLApps using Flask/003 Build ML Model App with Flask.srt
17.2 kB
02 - Python for MLOps/022 Control Statements - Looping Statements.srt
17.2 kB
17 - Monitor the ML System with WhyLogs/001 Introduction to ML Monitoring.srt
17.0 kB
03 - Git and Github Fundamentals for MLOps/013 Working with Remote Repositories.srt
16.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/042 Univariate & Bivariate Plots - Continuous Data.srt
16.7 kB
05 - Packaging the ML Models/011 sklearn pipeline.srt
16.7 kB
02 - Python for MLOps/012 Collection - Strings.srt
16.1 kB
12 - Working with CI CD Tool Jenkins/009 Installation of Jenkins on AWS EC2 Instances.srt
16.1 kB
06 - Mlflow - Manage ML experiments/007 Create ML Model for Loan Prediction.srt
15.9 kB
14 - Continuous Monitoring with Prometheus/004 Architecture of Prometheus.srt
15.9 kB
06 - Mlflow - Manage ML experiments/003 Logging Functions of Mlflow Tracking.srt
15.8 kB
12 - Working with CI CD Tool Jenkins/008 Test Locally using Docker Containers.srt
15.7 kB
07 - Docker for Machine Learning/008 Dockerize the ML Model.srt
15.6 kB
13 - Monitoring and Debugging of ML System/003 Why Monitoring Machine Learning Models is Difficult.srt
15.6 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/007 Array Creation Functions.srt
15.5 kB
07 - Docker for Machine Learning/006 Working with Dockerfile.srt
15.3 kB
06 - Mlflow - Manage ML experiments/001 Introduction to Mlflow.srt
15.2 kB
03 - Git and Github Fundamentals for MLOps/007 Git Workflow - Local Repo.srt
15.0 kB
12 - Working with CI CD Tool Jenkins/016 Installation of Docker Plugin & System Readiness.srt
15.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/041 Exploring the data.srt
14.9 kB
12 - Working with CI CD Tool Jenkins/005 Test FastAPI App.srt
14.9 kB
02 - Python for MLOps/009 Variables - Comments - Markdown Cells - Hands On.srt
14.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/023 Other Functions on Pandas DataFrame.srt
14.8 kB
17 - Monitor the ML System with WhyLogs/004 WhyLogs - Constraints and Drift Reports.srt
14.7 kB
14 - Continuous Monitoring with Prometheus/014 Monitor the FastAPI Application using Prometheus.srt
14.4 kB
05 - Packaging the ML Models/012 Training Pipeline.srt
14.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/038 Scatter Plot hands on.srt
14.4 kB
14 - Continuous Monitoring with Prometheus/012 Monitor the Linux Server with Node Exporter.srt
14.1 kB
02 - Python for MLOps/024 Functions.srt
14.0 kB
03 - Git and Github Fundamentals for MLOps/015 3 way merge.srt
14.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/030 Data Cleaning.srt
13.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/032 Matplotlib Basics.srt
13.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/011 Shape Modification of Arrays.srt
13.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/043 Plot - Categorical Data.srt
13.7 kB
13 - Monitoring and Debugging of ML System/006 Model Drift.srt
13.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/022 Combining the DataFrames.srt
13.5 kB
02 - Python for MLOps/011 Operators in Python Programming Language.srt
13.4 kB
02 - Python for MLOps/010 Python Literals - Hands On.srt
13.3 kB
03 - Git and Github Fundamentals for MLOps/001 Introduction to Version Control Systems.srt
13.3 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/034 Line Plots Hands On.srt
13.2 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/006 Array Indexing and Slicing.srt
13.2 kB
08 - Build MLApps using FastAPI/006 Deploying the Machine Learning Model with FastAPI.srt
12.9 kB
07 - Docker for Machine Learning/005 Running the Docker Container.srt
12.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/035 Adjusting the Plots.srt
12.8 kB
05 - Packaging the ML Models/025 Create setup.py.srt
12.6 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/021 Working with Data in Pandas DataFrame.srt
12.6 kB
19 - Reference Getting Started with AWS/014 Launch EC2 instance & SSH into EC2 Instances.srt
12.5 kB
19 - Reference Getting Started with AWS/003 Setting up MFA on Root Account.srt
12.1 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/018 Working with Pandas Series.srt
12.1 kB
12 - Working with CI CD Tool Jenkins/003 Prepare and Package ML Model.srt
12.1 kB
05 - Packaging the ML Models/013 Prediction Pipeline.srt
12.0 kB
03 - Git and Github Fundamentals for MLOps/011 Checking Out Commits.srt
11.6 kB
03 - Git and Github Fundamentals for MLOps/009 Switching the Branches.srt
11.5 kB
06 - Mlflow - Manage ML experiments/010 Setting Up MySql Database Locally.srt
11.4 kB
03 - Git and Github Fundamentals for MLOps/010 Merging.srt
11.4 kB
12 - Working with CI CD Tool Jenkins/020 Create CI CT CD Pipeline - Training.srt
11.4 kB
14 - Continuous Monitoring with Prometheus/015 Monitor All EndPoints using Prometheus.srt
11.2 kB
19 - Reference Getting Started with AWS/010 Creation of S3 Bucket from Console.srt
11.2 kB
07 - Docker for Machine Learning/009 Packaging the training code in Docker Environment & Summary.srt
11.2 kB
14 - Continuous Monitoring with Prometheus/001 Introduction to Continuous Monitoring.srt
11.2 kB
02 - Python for MLOps/014 Data Structures - List.srt
11.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/036 Plot Adjustment Hands On.srt
11.0 kB
06 - Mlflow - Manage ML experiments/005 Exploration of mlflow.srt
11.0 kB
05 - Packaging the ML Models/008 Data Handling Module.srt
10.8 kB
14 - Continuous Monitoring with Prometheus/010 Exploring the Basic Querying Prometheus.srt
10.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/027 Loading the Large Dataset for Working.srt
10.7 kB
03 - Git and Github Fundamentals for MLOps/005 Getting Started with Local Repo.srt
10.5 kB
02 - Python for MLOps/027 File Handling in Python.srt
10.2 kB
14 - Continuous Monitoring with Prometheus/009 Prometheus Configuration file.srt
10.1 kB
03 - Git and Github Fundamentals for MLOps/014 Cloning and Delete Branches.srt
10.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/029 Null values in the Dataframe.srt
9.8 kB
19 - Reference Getting Started with AWS/004 Create IAM Account and Account Alias.srt
9.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/044 Advanced Plots in Seaborn.srt
9.7 kB
05 - Packaging the ML Models/022 Running Pytest.srt
9.6 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/001 Introduction to Numpy Library.srt
9.6 kB
01 - Introduction to Complete MLOps Bootcamp/002 What and Why MLOps.html
9.6 kB
01 - Introduction to Complete MLOps Bootcamp/004 Stages of MLOps.html
9.5 kB
01 - Introduction to Complete MLOps Bootcamp/003 The Stages of MLOps.srt
9.3 kB
03 - Git and Github Fundamentals for MLOps/006 Concept of Working Directory - Staging Area - Commit.srt
9.3 kB
08 - Build MLApps using FastAPI/005 Data Validation with Pydantic.srt
9.2 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/013 Relational Operators & Aggregation Functions on Numpy Arrays.srt
9.2 kB
02 - Python for MLOps/026 Classes in Python.srt
9.1 kB
11 - Lnux Operating System for DevOps and Data Scientists/003 How to Launch EC2 Instances (Quick Refresh).srt
9.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/031 Introduction to Data Visualization.srt
9.0 kB
02 - Python for MLOps/008 Variables in Python.html
8.9 kB
08 - Build MLApps using FastAPI/001 What is API, REST and REST API.srt
8.8 kB
19 - Reference Getting Started with AWS/012 Version Enablement in S3.srt
8.7 kB
12 - Working with CI CD Tool Jenkins/024 Summary.srt
8.5 kB
06 - Mlflow - Manage ML experiments/002 Getting System Ready with mlflow.srt
8.5 kB
03 - Git and Github Fundamentals for MLOps/002 Getting Started with git.srt
8.5 kB
02 - Python for MLOps/006 Jupyter Lab Quick Tour.srt
8.2 kB
12 - Working with CI CD Tool Jenkins/022 Create CI CT CD Pipeline - Deployment.srt
8.1 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/039 Historgram Plot.srt
8.1 kB
12 - Working with CI CD Tool Jenkins/006 Create Dockerfile.srt
8.1 kB
03 - Git and Github Fundamentals for MLOps/004 Git Configurations.srt
8.1 kB
02 - Python for MLOps/021 Control Statements - Conditional Statements in Python.srt
8.1 kB
05 - Packaging the ML Models/019 Requirements txt file.srt
8.0 kB
05 - Packaging the ML Models/001 Introduction to Packaging the ML Models.srt
7.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/026 Accessing Google Colab.srt
7.7 kB
12 - Working with CI CD Tool Jenkins/021 Create CI CT CD Pipeline - Testing.srt
7.7 kB
12 - Working with CI CD Tool Jenkins/014 Create your first First Jenkins Project.srt
7.6 kB
12 - Working with CI CD Tool Jenkins/010 Installation of Docker in EC2 Instance.srt
7.6 kB
05 - Packaging the ML Models/020 Testing the New Virtual Environments.srt
7.5 kB
05 - Packaging the ML Models/027 Summary.srt
7.5 kB
05 - Packaging the ML Models/023 Create Manifest file.srt
7.4 kB
03 - Git and Github Fundamentals for MLOps/012 Git Hosting Services.srt
7.4 kB
02 - Python for MLOps/003 Introduction to Python Programming.srt
7.3 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/045 Which Plot to use.srt
7.2 kB
14 - Continuous Monitoring with Prometheus/008 Installation of Grafana.srt
7.0 kB
16 - Continuous Monitoring of Machine Learning Application/001 Architecture of ML Application Monitoring.srt
7.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/003 Import Numpy & Access help.srt
6.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/008 Copy Arrays.srt
6.9 kB
19 - Reference Getting Started with AWS/005 Setup CLI with Credentials.srt
6.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/004 Creation of Array Object - np.array().srt
6.8 kB
13 - Monitoring and Debugging of ML System/004 Challenge - Who Owns what.srt
6.7 kB
02 - Python for MLOps/020 String Formatting.srt
6.5 kB
19 - Reference Getting Started with AWS/011 Creation of S3 Bucket from CLI.srt
6.5 kB
02 - Python for MLOps/018 Explicit and Implicit Casting in Python Programming.srt
6.5 kB
02 - Python for MLOps/025 Modules in Python.srt
6.5 kB
08 - Build MLApps using FastAPI/003 What is FastAPI.srt
6.5 kB
12 - Working with CI CD Tool Jenkins/002 How do we Use Jenkins in MLOps.srt
6.5 kB
18 - Post Productionizing ML Models/001 Post-Productionalizing ML Models - What Next.srt
6.4 kB
02 - Python for MLOps/016 Data Structures - Dictionary.srt
6.4 kB
19 - Reference Getting Started with AWS/002 Create AWS Account.srt
6.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/009 Mathematical Operation on Numpy Arrays.srt
6.4 kB
03 - Git and Github Fundamentals for MLOps/003 Local Repo vs Remote Repo.srt
6.1 kB
05 - Packaging the ML Models/003 Model fit and generate Predictions.srt
6.0 kB
14 - Continuous Monitoring with Prometheus/003 Introduction to Prometheus.srt
5.9 kB
14 - Continuous Monitoring with Prometheus/013 Monitor the Client Application using Prometheus.srt
5.9 kB
02 - Python for MLOps/023 List comprehension.srt
5.8 kB
07 - Docker for Machine Learning/001 Docker for Machine Learning.srt
5.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/002 Basics of numpy array object.srt
5.6 kB
12 - Working with CI CD Tool Jenkins/012 Introduction to Jenkins FreeStyle Projects and Pipeline Jobs.srt
5.6 kB
02 - Python for MLOps/013 Python String - Builtin Functions - Hands On.srt
5.6 kB
05 - Packaging the ML Models/014 Fixes on Python Scripts.srt
5.6 kB
19 - Reference Getting Started with AWS/013 Introduction EC2 instances.srt
5.6 kB
02 - Python for MLOps/005 Hello World - Python.srt
5.5 kB
02 - Python for MLOps/015 Data Structures - Tuples.srt
5.5 kB
14 - Continuous Monitoring with Prometheus/005 Metric Types of Prometheus.srt
5.4 kB
13 - Monitoring and Debugging of ML System/001 Why Monitoring Machine Learning Models is Important.srt
5.4 kB
15 - Deploy Applications with Docker Compose/001 Introduction to Docker Compose.srt
5.4 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/012 np.arange().srt
5.3 kB
09 - Build MLApps using Streamlit/001 Introduction to Streamit.srt
5.3 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/005 Attributes of Numpy Array.srt
5.3 kB
18 - Post Productionizing ML Models/008 AB Testing.srt
5.2 kB
12 - Working with CI CD Tool Jenkins/013 Exploration of Jenkins UI.srt
5.2 kB
02 - Python for MLOps/007 Variables in Python.srt
5.1 kB
02 - Python for MLOps/017 Data Structures - Sets.srt
5.1 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/025 Introduction to EDA.srt
5.0 kB
05 - Packaging the ML Models/016 Add Python Path to Windows.srt
5.0 kB
02 - Python for MLOps/019 Reading the Input from Keyboard.srt
5.0 kB
01 - Introduction to Complete MLOps Bootcamp/001 What and Why MLOps.srt
5.0 kB
05 - Packaging the ML Models/018 Perform Training and Predictions.srt
4.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/037 Scatter Plot.srt
4.8 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/010 Linear Algebra Functions in Numpy.srt
4.8 kB
05 - Packaging the ML Models/015 Add Python Path to MacOS.srt
4.8 kB
14 - Continuous Monitoring with Prometheus/002 Use case on Continuous Monitoring.srt
4.7 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/040 Introduction to Seaborn.srt
4.7 kB
05 - Packaging the ML Models/010 Data Preprocessing part 2.srt
4.6 kB
05 - Packaging the ML Models/024 Create Version File.srt
4.5 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/033 Types of Plot - Line plot.srt
4.4 kB
07 - Docker for Machine Learning/007 Push the Docker Image to DockerHub.srt
4.4 kB
13 - Monitoring and Debugging of ML System/007 Operational Level Monitoring.srt
4.4 kB
18 - Post Productionizing ML Models/009 Future of MLOps.srt
4.3 kB
13 - Monitoring and Debugging of ML System/002 What is Monitoring of ML models & When to Update Model in Production.srt
4.1 kB
12 - Working with CI CD Tool Jenkins/023 Perform Test of Pipeline.srt
4.1 kB
13 - Monitoring and Debugging of ML System/008 Tools and Best Practices of Machine Learning Model Monitoring.srt
4.1 kB
18 - Post Productionizing ML Models/003 Adversarial Attack.srt
4.1 kB
18 - Post Productionizing ML Models/007 How to Mitigate Risk of Model Attacks.srt
4.0 kB
05 - Packaging the ML Models/017 No module named prediction_model - fix.srt
4.0 kB
17 - Monitor the ML System with WhyLogs/005 Summary.srt
3.9 kB
03 - Git and Github Fundamentals for MLOps/016 Summary.srt
3.9 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/019 Mathematical Operation on Pandas Series.srt
3.8 kB
14 - Continuous Monitoring with Prometheus/011 Monitor the Infrastructure with Prometheus.srt
3.6 kB
02 - Python for MLOps/029 Libraries in Python.srt
3.5 kB
10 - Build MLApps using Flask/001 What is Flask.srt
3.5 kB
02 - Python for MLOps/028 Working with Python Scripts.srt
3.5 kB
02 - Python for MLOps/004 Install Anaconda.srt
3.4 kB
12 - Working with CI CD Tool Jenkins/018 Introduction to CI CT CD Pipeline.srt
3.0 kB
18 - Post Productionizing ML Models/002 Model Security.srt
3.0 kB
20 - Python for Data Science - Numpy - Pandas - Matplotlib - (Additional Learning)/014 Boolean Masking.srt
2.9 kB
19 - Reference Getting Started with AWS/001 What do we cover in this section.srt
2.9 kB
06 - Mlflow - Manage ML experiments/013 Summary.srt
2.9 kB
14 - Continuous Monitoring with Prometheus/007 Introduction Grafana.srt
2.7 kB
11 - Lnux Operating System for DevOps and Data Scientists/001 Agenda of this section.srt
2.6 kB
17 - Monitor the ML System with WhyLogs/002 Setting Up WhyLabs.srt
2.5 kB
02 - Python for MLOps/001 About the Section.srt
2.3 kB
18 - Post Productionizing ML Models/006 Data Privacy Attack.srt
2.2 kB
12 - Working with CI CD Tool Jenkins/007 Exposing the Application Port as per Dockerfile.srt
2.1 kB
19 - Reference Getting Started with AWS/008 Delete the IAM User.srt
1.7 kB
19 - Reference Getting Started with AWS/015 Clean Up Activity.srt
1.4 kB
18 - Post Productionizing ML Models/004 Data Poisoning Attack.srt
1.3 kB
18 - Post Productionizing ML Models/005 Distributed Denial of Service Attack (DDOS).srt
1.2 kB
01 - Introduction to Complete MLOps Bootcamp/external-links.txt
167 Bytes
01 - Introduction to Complete MLOps Bootcamp/005 Source code for this course.html
114 Bytes
01 - Introduction to Complete MLOps Bootcamp/006 Slide Download Link.html
93 Bytes
01 - Introduction to Complete MLOps Bootcamp/005 Github-Link.url
85 Bytes
01 - Introduction to Complete MLOps Bootcamp/006 Slide-Download-Link.url
80 Bytes
07 - Docker for Machine Learning/003 Installation of Docker Desktop.srt
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!