搜索
[GigaCourse.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子名称
[GigaCourse.com] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子简介
种子哈希:
acd05b572f79a682c69b94db38918b4e3e3110d7
文件大小:
1.9G
已经下载:
1389
次
下载速度:
极快
收录时间:
2021-04-13
最近下载:
2025-06-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:ACD05B572F79A682C69B94DB38918B4E3E3110D7
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
大神 bibian
pedo
女生
重生
cawd-08
cmc 170
妈妈
没穿内裤
最强ai
青梅竹
3p轮操
没穿探花
习
爱吃大鸡吧
x-art++-+addison
离婚少妇
ddsc
aczd
风月系列
kbj 은소라
一女战群男
valen2025
paola hard
uhd complete
水川堇
人妻全过程记录
師
欧美作品
恋物癖小哥
口
文件列表
11. Appendix FAQ/2. Windows-Focused Environment Setup 2018.mp4
195.4 MB
4. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.mp4
108.8 MB
5. Markov Decision Proccesses/7. Bellman Examples.mp4
91.3 MB
11. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
10. Stock Trading Project with Reinforcement Learning/6. Code pt 2.mp4
68.5 MB
3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.mp4
57.3 MB
10. Stock Trading Project with Reinforcement Learning/2. Data and Environment.mp4
54.5 MB
2. Return of the Multi-Armed Bandit/9. Bayesian Thompson Sampling.mp4
54.4 MB
2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp4
53.7 MB
10. Stock Trading Project with Reinforcement Learning/5. Code pt 1.mp4
52.1 MB
10. Stock Trading Project with Reinforcement Learning/8. Code pt 4.mp4
51.5 MB
10. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.mp4
47.1 MB
11. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.0 MB
3. High Level Overview of Reinforcement Learning/3. Defining Some Terms.mp4
44.4 MB
11. Appendix FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.8 MB
11. Appendix FAQ/12. BONUS Where to get discount coupons and FREE deep learning material.mp4
39.7 MB
11. Appendix FAQ/11. What order should I take your courses in (part 2).mp4
39.4 MB
3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.mp4
38.9 MB
1. Welcome/1. Introduction.mp4
35.9 MB
2. Return of the Multi-Armed Bandit/12. Bandit Summary, Real Data, and Online Learning.mp4
35.6 MB
10. Stock Trading Project with Reinforcement Learning/7. Code pt 3.mp4
35.4 MB
1. Welcome/4. Course Outline.mp4
32.5 MB
11. Appendix FAQ/10. What order should I take your courses in (part 1).mp4
30.7 MB
10. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.mp4
28.1 MB
11. Appendix FAQ/4. How to Code by Yourself (part 1).mp4
25.7 MB
2. Return of the Multi-Armed Bandit/5. Designing Your Bandit Program.mp4
25.7 MB
10. Stock Trading Project with Reinforcement Learning/4. Design of the Program.mp4
24.4 MB
6. Dynamic Programming/3. Designing Your RL Program.mp4
23.4 MB
4. Build an Intelligent Tic-Tac-Toe Agent/12. Tic Tac Toe Exercise.mp4
20.7 MB
5. Markov Decision Proccesses/5. Value Function Introduction.mp4
20.7 MB
11. Appendix FAQ/6. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. Return of the Multi-Armed Bandit/7. Optimistic Initial Values.mp4
16.6 MB
10. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.mp4
16.5 MB
11. Appendix FAQ/5. How to Code by Yourself (part 2).mp4
15.5 MB
9. Approximation Methods/9. Course Summary and Next Steps.mp4
13.9 MB
4. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.mp4
13.3 MB
6. Dynamic Programming/4. Iterative Policy Evaluation in Code.mp4
12.6 MB
6. Dynamic Programming/2. Gridworld in Code.mp4
12.0 MB
9. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4
11.1 MB
2. Return of the Multi-Armed Bandit/10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.mp4
11.1 MB
7. Monte Carlo/6. Monte Carlo Control in Code.mp4
10.7 MB
4. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.mp4
10.5 MB
4. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.mp4
10.3 MB
1. Welcome/3. Strategy for Passing the Course.mp4
9.9 MB
4. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.mp4
9.9 MB
7. Monte Carlo/5. Monte Carlo Control.mp4
9.7 MB
6. Dynamic Programming/8. Policy Iteration in Windy Gridworld.mp4
9.5 MB
4. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.mp4
9.4 MB
8. Temporal Difference Learning/5. SARSA in Code.mp4
9.2 MB
7. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4
9.2 MB
9. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4
8.8 MB
4. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.mp4
8.7 MB
6. Dynamic Programming/11. Dynamic Programming Summary.mp4
8.7 MB
5. Markov Decision Proccesses/6. Value Functions.mp4
8.7 MB
2. Return of the Multi-Armed Bandit/8. UCB1.mp4
8.6 MB
8. Temporal Difference Learning/4. SARSA.mp4
8.6 MB
7. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4
8.4 MB
2. Return of the Multi-Armed Bandit/6. Comparing Different Epsilons.mp4
8.4 MB
7. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4
8.3 MB
11. Appendix FAQ/9. Python 2 vs Python 3.mp4
8.2 MB
7. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4
8.2 MB
6. Dynamic Programming/7. Policy Iteration in Code.mp4
8.0 MB
2. Return of the Multi-Armed Bandit/11. Nonstationary Bandits.mp4
7.8 MB
5. Markov Decision Proccesses/2. The Markov Property.mp4
7.5 MB
5. Markov Decision Proccesses/3. Defining and Formalizing the MDP.mp4
7.0 MB
9. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4
6.9 MB
2. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.mp4
6.8 MB
9. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4
6.8 MB
9. Approximation Methods/1. Approximation Intro.mp4
6.8 MB
9. Approximation Methods/3. Features.mp4
6.6 MB
6. Dynamic Programming/9. Value Iteration.mp4
6.5 MB
4. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.mp4
6.4 MB
8. Temporal Difference Learning/2. TD(0) Prediction.mp4
6.1 MB
7. Monte Carlo/9. Monte Carlo Summary.mp4
6.0 MB
5. Markov Decision Proccesses/9. MDP Summary.mp4
5.9 MB
11. Appendix FAQ/1. What is the Appendix.mp4
5.7 MB
8. Temporal Difference Learning/7. Q Learning in Code.mp4
5.7 MB
8. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4
5.6 MB
5. Markov Decision Proccesses/4. Future Rewards.mp4
5.4 MB
4. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.mp4
5.3 MB
7. Monte Carlo/1. Monte Carlo Intro.mp4
5.2 MB
6. Dynamic Programming/10. Value Iteration in Code.mp4
5.1 MB
8. Temporal Difference Learning/6. Q Learning.mp4
5.1 MB
6. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4
5.1 MB
9. Approximation Methods/7. Semi-Gradient SARSA.mp4
4.9 MB
7. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4
4.8 MB
6. Dynamic Programming/5. Policy Improvement.mp4
4.8 MB
1. Welcome/2. Where to get the Code.mp4
4.7 MB
4. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.mp4
4.6 MB
4. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.mp4
4.4 MB
8. Temporal Difference Learning/8. TD Summary.mp4
4.1 MB
5. Markov Decision Proccesses/1. Gridworld.mp4
3.5 MB
5. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.mp4
3.4 MB
6. Dynamic Programming/6. Policy Iteration.mp4
3.3 MB
9. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4
3.0 MB
2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy.mp4
2.9 MB
8. Temporal Difference Learning/1. Temporal Difference Intro.mp4
2.9 MB
2. Return of the Multi-Armed Bandit/4. Updating a Sample Mean.mp4
2.3 MB
11. Appendix FAQ/7. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
32.5 kB
11. Appendix FAQ/4. How to Code by Yourself (part 1).srt
30.9 kB
5. Markov Decision Proccesses/7. Bellman Examples.srt
28.3 kB
11. Appendix FAQ/11. What order should I take your courses in (part 2).srt
23.6 kB
4. Build an Intelligent Tic-Tac-Toe Agent/4. The Value Function and Your First Reinforcement Learning Algorithm.srt
23.3 kB
11. Appendix FAQ/2. Windows-Focused Environment Setup 2018.srt
20.6 kB
11. Appendix FAQ/5. How to Code by Yourself (part 2).srt
18.9 kB
11. Appendix FAQ/3. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
18.8 kB
11. Appendix FAQ/10. What order should I take your courses in (part 1).srt
16.4 kB
9. Approximation Methods/9. Course Summary and Next Steps.srt
16.3 kB
10. Stock Trading Project with Reinforcement Learning/2. Data and Environment.srt
16.1 kB
5. Markov Decision Proccesses/5. Value Function Introduction.srt
16.0 kB
4. Build an Intelligent Tic-Tac-Toe Agent/2. Components of a Reinforcement Learning System.srt
15.2 kB
11. Appendix FAQ/6. How to Succeed in this Course (Long Version).srt
14.9 kB
11. Appendix FAQ/8. Proof that using Jupyter Notebook is the same as not using it.srt
14.5 kB
10. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.srt
12.3 kB
4. Build an Intelligent Tic-Tac-Toe Agent/8. Tic Tac Toe Code The Environment.srt
12.3 kB
2. Return of the Multi-Armed Bandit/9. Bayesian Thompson Sampling.srt
12.1 kB
1. Welcome/3. Strategy for Passing the Course.srt
12.1 kB
5. Markov Decision Proccesses/6. Value Functions.srt
12.0 kB
10. Stock Trading Project with Reinforcement Learning/6. Code pt 2.srt
12.0 kB
4. Build an Intelligent Tic-Tac-Toe Agent/7. Tic Tac Toe Code Enumerating States Recursively.srt
11.6 kB
6. Dynamic Programming/2. Gridworld in Code.srt
11.2 kB
4. Build an Intelligent Tic-Tac-Toe Agent/9. Tic Tac Toe Code The Agent.srt
11.2 kB
2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.srt
11.2 kB
3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.srt
11.2 kB
7. Monte Carlo/2. Monte Carlo Policy Evaluation.srt
11.1 kB
7. Monte Carlo/5. Monte Carlo Control.srt
10.5 kB
6. Dynamic Programming/4. Iterative Policy Evaluation in Code.srt
10.5 kB
4. Build an Intelligent Tic-Tac-Toe Agent/11. Tic Tac Toe Summary.srt
10.5 kB
8. Temporal Difference Learning/4. SARSA.srt
9.9 kB
10. Stock Trading Project with Reinforcement Learning/5. Code pt 1.srt
9.9 kB
6. Dynamic Programming/11. Dynamic Programming Summary.srt
9.6 kB
4. Build an Intelligent Tic-Tac-Toe Agent/10. Tic Tac Toe Code Main Loop and Demo.srt
9.5 kB
3. High Level Overview of Reinforcement Learning/3. Defining Some Terms.srt
9.4 kB
2. Return of the Multi-Armed Bandit/12. Bandit Summary, Real Data, and Online Learning.srt
9.3 kB
10. Stock Trading Project with Reinforcement Learning/4. Design of the Program.srt
8.7 kB
5. Markov Decision Proccesses/2. The Markov Property.srt
8.6 kB
6. Dynamic Programming/8. Policy Iteration in Windy Gridworld.srt
8.4 kB
2. Return of the Multi-Armed Bandit/8. UCB1.srt
8.3 kB
10. Stock Trading Project with Reinforcement Learning/8. Code pt 4.srt
8.2 kB
9. Approximation Methods/1. Approximation Intro.srt
8.2 kB
3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.srt
8.1 kB
11. Appendix FAQ/12. BONUS Where to get discount coupons and FREE deep learning material.srt
8.1 kB
5. Markov Decision Proccesses/3. Defining and Formalizing the MDP.srt
8.1 kB
2. Return of the Multi-Armed Bandit/1. Problem Setup and The Explore-Exploit Dilemma.srt
8.0 kB
2. Return of the Multi-Armed Bandit/11. Nonstationary Bandits.srt
8.0 kB
9. Approximation Methods/2. Linear Models for Reinforcement Learning.srt
7.6 kB
4. Build an Intelligent Tic-Tac-Toe Agent/1. Naive Solution to Tic-Tac-Toe.srt
7.4 kB
7. Monte Carlo/9. Monte Carlo Summary.srt
7.3 kB
6. Dynamic Programming/9. Value Iteration.srt
7.1 kB
9. Approximation Methods/3. Features.srt
7.1 kB
10. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.srt
7.0 kB
1. Welcome/4. Course Outline.srt
7.0 kB
6. Dynamic Programming/3. Designing Your RL Program.srt
6.8 kB
4. Build an Intelligent Tic-Tac-Toe Agent/5. Tic Tac Toe Code Outline.srt
6.6 kB
8. Temporal Difference Learning/2. TD(0) Prediction.srt
6.5 kB
9. Approximation Methods/6. TD(0) Semi-Gradient Prediction.srt
6.5 kB
7. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.srt
6.3 kB
11. Appendix FAQ/9. Python 2 vs Python 3.srt
6.2 kB
2. Return of the Multi-Armed Bandit/10. Thompson Sampling vs. Epsilon-Greedy vs. Optimistic Initial Values vs. UCB1.srt
6.2 kB
6. Dynamic Programming/7. Policy Iteration in Code.srt
6.2 kB
5. Markov Decision Proccesses/4. Future Rewards.srt
6.2 kB
7. Monte Carlo/1. Monte Carlo Intro.srt
6.1 kB
7. Monte Carlo/6. Monte Carlo Control in Code.srt
6.0 kB
8. Temporal Difference Learning/6. Q Learning.srt
6.0 kB
2. Return of the Multi-Armed Bandit/5. Designing Your Bandit Program.srt
5.7 kB
8. Temporal Difference Learning/5. SARSA in Code.srt
5.7 kB
7. Monte Carlo/7. Monte Carlo Control without Exploring Starts.srt
5.7 kB
9. Approximation Methods/7. Semi-Gradient SARSA.srt
5.6 kB
10. Stock Trading Project with Reinforcement Learning/7. Code pt 3.srt
5.5 kB
1. Welcome/2. Where to get the Code.srt
5.5 kB
9. Approximation Methods/8. Semi-Gradient SARSA in Code.srt
5.5 kB
6. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.srt
5.5 kB
2. Return of the Multi-Armed Bandit/6. Comparing Different Epsilons.srt
5.4 kB
7. Monte Carlo/4. Policy Evaluation in Windy Gridworld.srt
5.4 kB
6. Dynamic Programming/5. Policy Improvement.srt
5.3 kB
5. Markov Decision Proccesses/8. Optimal Policy and Optimal Value Function.srt
5.1 kB
4. Build an Intelligent Tic-Tac-Toe Agent/3. Notes on Assigning Rewards.srt
5.1 kB
4. Build an Intelligent Tic-Tac-Toe Agent/6. Tic Tac Toe Code Representing States.srt
5.0 kB
8. Temporal Difference Learning/8. TD Summary.srt
4.8 kB
4. Build an Intelligent Tic-Tac-Toe Agent/12. Tic Tac Toe Exercise.srt
4.7 kB
10. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.srt
4.5 kB
1. Welcome/1. Introduction.srt
4.3 kB
5. Markov Decision Proccesses/1. Gridworld.srt
4.1 kB
9. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.srt
4.1 kB
8. Temporal Difference Learning/3. TD(0) Prediction in Code.srt
4.1 kB
11. Appendix FAQ/1. What is the Appendix.srt
3.8 kB
7. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.srt
3.7 kB
6. Dynamic Programming/6. Policy Iteration.srt
3.5 kB
8. Temporal Difference Learning/7. Q Learning in Code.srt
3.5 kB
6. Dynamic Programming/10. Value Iteration in Code.srt
3.4 kB
8. Temporal Difference Learning/1. Temporal Difference Intro.srt
3.4 kB
2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy.srt
3.3 kB
2. Return of the Multi-Armed Bandit/7. Optimistic Initial Values.srt
3.1 kB
9. Approximation Methods/4. Monte Carlo Prediction with Approximation.srt
2.4 kB
2. Return of the Multi-Armed Bandit/4. Updating a Sample Mean.srt
2.2 kB
5. Markov Decision Proccesses/9. MDP Summary.srt
2.0 kB
[GigaCourse.com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>