搜索
[FCO] AppliedAICourse - Applied Machine Learning Course
磁力链接/BT种子名称
[FCO] AppliedAICourse - Applied Machine Learning Course
磁力链接/BT种子简介
种子哈希:
a7ace29dcaaf7b5767374e6a1aed0cef55f82d9b
文件大小:
25.37G
已经下载:
295
次
下载速度:
极快
收录时间:
2025-04-08
最近下载:
2025-05-23
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:A7ACE29DCAAF7B5767374E6A1AED0CEF55F82D9B
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
最小鸡
完整泄密
りょう
渣精
西夏
海鲜
租车
into
小田
roku
绿 精液
alexander 2004
学生露出
动乱
mizumizuni
按摩3p
真x
极品spa
束缚
爱上自己的小姨
ギャルjkおねショタ 1-2 辣妹姐姐與正太弟弟 1-2 [chinese] [夢之行蹤漢化組]
clone
里中亜矢子
倒立口交
推特福利姬
作业
amateur pack
欧美写真视频
制药
长的
文件列表
1.1 - How to Learn from Appliedaicourse/1.1 - How to Learn from Appliedaicourse.mp4
465.1 MB
34.2 - Productionization and deployment of Machine Learning Models/34.2 - Productionization and deployment of Machine Learning Models.mp4.mkv
280.3 MB
1.2 - How the Job Guarantee program works/1.2 - How the Job Guarantee program works.mp4
255.7 MB
5.1 - Numpy Introduction/5.1 - Numpy Introduction.mp4
164.7 MB
5.2 - Numerical operations on Numpy/5.2 - Numerical operations on Numpy.mp4
163.6 MB
45.9 - Univariate AnalysisGene feature/45.9 - Univariate AnalysisGene feature.mp4
151.2 MB
3.1 - Lists/3.1 - Lists.mp4
148.1 MB
49.6 - Softmax Classifier on MNIST dataset/49.6 - Softmax Classifier on MNIST dataset..mp4
146.9 MB
57.26 - Data Control Language GRANT, REVOKE/57.26 - Data Control Language GRANT, REVOKE.mp4
145.4 MB
51.6 - LSTM/51.6 - LSTM..mp4
143.8 MB
54.4 - Char-RNN with abc-notation Data preparation/54.4 - Char-RNN with abc-notation Data preparation..mp4
138.1 MB
41.9 - EDA Advanced Feature Extraction/41.9 - EDA Advanced Feature Extraction.mp4
137.7 MB
51.10 - Code example IMDB Sentiment classification/51.10 - Code example IMDB Sentiment classification.mp4
128.7 MB
23.5 - Naive Bayes algorithm/23.5 - Naive Bayes algorithm.mp4
122.4 MB
42.13 - Code for bag of words based product similarity/42.13 - Code for bag of words based product similarity.mp4
122.0 MB
50.2 - ConvolutionEdge Detection on images/50.2 - ConvolutionEdge Detection on images..mp4
121.6 MB
23.6 - Toy example Train and test stages/23.6 - Toy example Train and test stages.mp4
121.5 MB
45.13 - Baseline Model Naive Bayes/45.13 - Baseline Model Naive Bayes.mp4
121.0 MB
53.12 - Test and visualize the output/53.12 - Test and visualize the output..mp4
119.3 MB
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/17.1 - Dataset overview Amazon Fine Food reviews(EDA).mp4
116.4 MB
50.14 - Residual Network/50.14 - Residual Network..mp4
113.8 MB
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV.mp4
112.1 MB
51.2 - Recurrent Neural Network/51.2 - Recurrent Neural Network..mp4
110.3 MB
53.10 - NVIDIA’s end to end CNN model/53.10 - NVIDIA’s end to end CNN model..mp4
108.6 MB
47.8 - Training an MLP Chain Rule/47.8 - Training an MLP Chain Rule.mp4
107.0 MB
48.3 - Rectified Linear Units (ReLU)/48.3 - Rectified Linear Units (ReLU)..mp4
107.0 MB
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/11.9 - Q-Q plotHow to test if a random variable is normally distributed or not.mp4
106.6 MB
48.18 - Auto Encoders/48.18 - Auto Encoders..mp4
102.3 MB
4.2 - Types of functions/4.2 - Types of functions.mp4
100.7 MB
18.27 - LSH for cosine similarity/18.27 - LSH for cosine similarity.mp4
100.7 MB
18.30 - Code SampleDecision boundary/18.30 - Code SampleDecision boundary ..mp4
100.2 MB
20.17 - curse of dimensionality/20.17 - curse of dimensionality.mp4
99.6 MB
49.8 - Model 1 Sigmoid activation/49.8 - Model 1 Sigmoid activation.mp4
99.6 MB
42.6 - Data cleaning and understandingMissing data in various features/42.6 - Data cleaning and understandingMissing data in various features.mp4
99.4 MB
4.8 - File Handling/4.8 - File Handling.mp4
97.4 MB
32.16 - Stacking models/32.16 - Stacking models.mp4
97.4 MB
36.3 - Proximity methods Advantages and Limitations/36.3 - Proximity methods Advantages and Limitations..mp4
96.3 MB
57.20 - Sub QueriesNested QueriesInner Queries/57.20 - Sub QueriesNested QueriesInner Queries.mp4
94.9 MB
7.3 - Key Operations on Data Frames/7.3 - Key Operations on Data Frames.mp4
94.8 MB
24.2 - Sigmoid function Squashing/24.2 - Sigmoid function Squashing.mp4
94.5 MB
57.13 - Logical Operators/57.13 - Logical Operators.mp4
92.6 MB
17.5 - Text Preprocessing Stemming/Stop-word removal, Tokenization, Lemmatization (Featurizations - convert text to numeric vectors).mp4
92.5 MB
54.3 - Char-RNN with abc-notation Char-RNN model/54.3 - Char-RNN with abc-notation Char-RNN model.mp4
91.1 MB
20.11 - Local outlier Factor(A)/20.11 - Local outlier Factor(A).mp4
91.0 MB
49.12 - MNIST classification in Keras/49.12 - MNIST classification in Keras..mp4
90.9 MB
48.16 - Softmax and Cross-entropy for multi-class classification/48.16 - Softmax and Cross-entropy for multi-class classification..mp4
90.1 MB
14.9 - PCA Code example/14.9 - PCA Code example.mp4
89.6 MB
48.9 - Batch SGD with momentum/48.9 - Batch SGD with momentum..mp4
89.2 MB
20.18 - Bias-Variance tradeoff/20.18 - Bias-Variance tradeoff.mp4
88.2 MB
38.1 - Problem formulation Movie reviews/38.1 - Problem formulation Movie reviews.mp4
88.1 MB
57.19 - Inner, Left, Right and Outer joins/57.19 - Inner, Left, Right and Outer joins..mp4
87.6 MB
47.12 - Vanishing Gradient problem/47.12 - Vanishing Gradient problem..mp4
86.3 MB
55.2 - Dataset understanding/55.2 - Dataset understanding.mp4
85.7 MB
28.2 - Mathematical derivation/28.2 - Mathematical derivation.mp4
85.3 MB
48.2 - Dropout layers & Regularization/48.2 - Dropout layers & Regularization..mp4
85.0 MB
50.16 - What is Transfer learning/50.16 - What is Transfer learning..mp4
84.5 MB
50.17 - Code example Cats vs Dogs/50.17 - Code example Cats vs Dogs..mp4
84.4 MB
40.10 - Data Modeling Multi label Classification/40.10 - Data Modeling Multi label Classification.mp4
83.9 MB
46.14 - Data PreparationClusteringSegmentation/46.14 - Data PreparationClusteringSegmentation.mp4
83.3 MB
11.18 - Applications of non-gaussian distributions/11.18 - Applications of non-gaussian distributions.mp4
82.9 MB
45.8 - Exploratory Data Analysis “Random” Model/45.8 - Exploratory Data Analysis “Random” Model.mp4
82.2 MB
45.10 - Univariate AnalysisVariation Feature/45.10 - Univariate AnalysisVariation Feature.mp4
81.0 MB
50.15 - Inception Network/50.15 - Inception Network..mp4
80.2 MB
24.1 - Geometric intuition of Logistic Regression/24.1 - Geometric intuition of Logistic Regression.mp4
79.6 MB
49.1 - Tensorflow and Keras overview/49.1 - Tensorflow and Keras overview.mp4
79.4 MB
23.3 - Bayes Theorem with examples/23.3 - Bayes Theorem with examples.mp4
78.8 MB
40.5 - Mapping to an ML problemPerformance metrics/40.5 - Mapping to an ML problemPerformance metrics..mp4
78.6 MB
50.3 - ConvolutionPadding and strides/50.3 - ConvolutionPadding and strides.mp4
77.0 MB
50.12 - AlexNet/50.12 - AlexNet.mp4
77.0 MB
47.10 - Backpropagation/47.10 - Backpropagation..mp4
76.6 MB
50.11 - Convolution Layers in Keras/50.11 - Convolution Layers in Keras.mp4
76.5 MB
2.5 - Variables and data types in Python/2.5 - Variables and data types in Python.mp4.mkv
75.3 MB
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/24.7 - Probabilistic Interpretation Gaussian Naive Bayes.mp4
75.0 MB
42.18 - Code for Average Word2Vec product similarity/42.18 - Code for Average Word2Vec product similarity.mp4
74.8 MB
17.4 - Bag of Words (BoW)/17.4 - Bag of Words (BoW).mp4
74.8 MB
48.7 - OptimizersHill descent in 3D and contours/48.7 - OptimizersHill descent in 3D and contours..mp4
74.7 MB
45.11 - Univariate AnalysisText feature/45.11 - Univariate AnalysisText feature.mp4
73.1 MB
26.1 - Differentiation/26.1 - Differentiation.mp4
72.5 MB
47.6 - Notation/47.6 - Notation.mp4
72.4 MB
17.11 - Bag of Words( Code Sample)/17.11 - Bag of Words( Code Sample).mp4
72.3 MB
34.12 - VC dimension/34.12 - VC dimension.mp4
71.9 MB
17.2 - Data Cleaning Deduplication/17.2 - Data Cleaning Deduplication.mp4
71.7 MB
47.7 - Training a single-neuron model/47.7 - Training a single-neuron model..mp4
71.6 MB
9.1 - Introduction to IRIS dataset and 2D scatter plot/9.1 - Introduction to IRIS dataset and 2D scatter plot.mp4.mkv
71.4 MB
44.11 - Computing Similarity matricesUser-User similarity matrix/44.11 - Computing Similarity matricesUser-User similarity matrix.mp4
71.2 MB
24.15 - Non-linearly separable data & feature engineering/24.15 - Non-linearly separable data & feature engineering.mp4
70.7 MB
15.5 - How to apply t-SNE and interpret its output/15.5 - How to apply t-SNE and interpret its output.mp4
70.6 MB
44.23 - Surprise KNN predictors/44.23 - Surprise KNN predictors.mp4
69.4 MB
45.4 - ML problem formulation Mapping real world to ML problem#/45.4 - ML problem formulation Mapping real world to ML problem..mp4
69.3 MB
48.19 - Word2Vec CBOW/48.19 - Word2Vec CBOW.mp4
68.9 MB
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer.mp4
68.3 MB
11.29 - Hypothesis Testing Intution with coin toss example/11.29 - Hypothesis Testing Intution with coin toss example.mp4
67.3 MB
28.14 - Code Sample/28.14 - Code Sample.mp4
66.8 MB
51.3 - Training RNNs Backprop/51.3 - Training RNNs Backprop..mp4
66.6 MB
32.14 - XGBoost Boosting + Randomization/32.14 - XGBoost Boosting + Randomization.mp4
65.7 MB
57.1 - Introduction to Databases/57.1 - Introduction to Databases.mp4
65.7 MB
24.5 - L2 Regularization Overfitting and Underfitting/24.5 - L2 Regularization Overfitting and Underfitting.mp4
65.2 MB
35.8 - How to initialize K-Means++/35.8 - How to initialize K-Means++.mp4
65.0 MB
3.5 - Dictionary/3.5 - Dictionary.mp4
65.0 MB
42.9 - Remove duplicates Part 2/42.9 - Remove duplicates Part 2.mp4
64.6 MB
53.11 - Train the model/53.11 - Train the model..mp4
64.2 MB
4.9 - Exception Handling/4.9 - Exception Handling.mp4
63.7 MB
34.11 - Data Science Life cycle/34.11 - Data Science Life cycle.mp4.mkv
63.3 MB
50.5 - Convolutional layer/50.5 - Convolutional layer..mp4
63.1 MB
35.3 - Applications/35.3 - Applications.mp4
63.0 MB
11.31 - K-S Test for similarity of two distributions/11.31 - K-S Test for similarity of two distributions.mp4
62.8 MB
47.1 - History of Neural networks and Deep Learning/47.1 - History of Neural networks and Deep Learning..mp4
62.6 MB
11.35 - How to use hypothesis testing/11.35 - How to use hypothesis testing.mp4
62.5 MB
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/21.2 - Confusion matrix, TPR, FPR, FNR, TNR.mp4
62.3 MB
33.2 - Moving window for Time Series Data/33.2 - Moving window for Time Series Data.mp4
61.7 MB
49.2 - GPU vs CPU for Deep Learning/49.2 - GPU vs CPU for Deep Learning..mp4
61.7 MB
47.14 - Decision surfaces Playground/47.14 - Decision surfaces Playground.mp4
61.2 MB
20.15 - Handling categorical and numerical features/20.15 - Handling categorical and numerical features.mp4
61.0 MB
57.8 - SELECT/57.8 - SELECT.mp4
60.9 MB
11.16 - Power law distribution/11.16 - Power law distribution.mp4
60.8 MB
4.10 - Debugging Python/4.10 - Debugging Python.mp4
60.8 MB
23.8 - LaplaceAdditive Smoothing/23.8 - LaplaceAdditive Smoothing.mp4
60.6 MB
17.12 - Text Preprocessing( Code Sample)/17.12 - Text Preprocessing( Code Sample).mp4
60.4 MB
30.6 - Building a decision Tree Constructing a DT/30.6 - Building a decision Tree Constructing a DT.mp4
60.2 MB
24.3 - Mathematical formulation of Objective function/24.3 - Mathematical formulation of Objective function.mp4
59.8 MB
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/11.3 - GaussianNormal Distribution and its PDF(Probability Density Function).mp4.mkv
59.7 MB
47.5 - Multi-Layered Perceptron (MLP)/47.5 - Multi-Layered Perceptron (MLP)..mp4
59.1 MB
48.5 - Batch Normalization/48.5 - Batch Normalization..mp4
59.0 MB
18.31 - Code SampleCross Validation/18.31 - Code SampleCross Validation.mp4
58.5 MB
20.2 - Imbalanced vs balanced dataset/20.2 - Imbalanced vs balanced dataset.mp4
58.4 MB
38.14 - Code example/38.14 - Code example..mp4
58.1 MB
38.6 - Matrix Factorization for Collaborative filtering/38.6 - Matrix Factorization for Collaborative filtering.mp4
57.6 MB
38.4 - Matrix Factorization PCA, SVD/38.4 - Matrix Factorization PCA, SVD.mp4
57.4 MB
6.1 - Getting started with Matplotlib/6.1 - Getting started with Matplotlib.mp4
57.3 MB
18.11 - Decision surface for K-NN as K changes/18.11 - Decision surface for K-NN as K changes.mp4
57.2 MB
56.11 - PageRank/56.11 - PageRank.mp4
57.2 MB
18.12 - Overfitting and Underfitting/18.12 - Overfitting and Underfitting.mp4
57.1 MB
34.10 - AB testing/34.10 - AB testing..mp4
57.1 MB
48.4 - Weight initialization/48.4 - Weight initialization..mp4
56.9 MB
17.15 - Word2Vec (Code Sample)/17.15 - Word2Vec (Code Sample).mp4
56.6 MB
33.3 - Fourier decomposition/33.3 - Fourier decomposition.mp4
56.3 MB
25.4 - Code sample for Linear Regression/25.4 - Code sample for Linear Regression.mp4
56.0 MB
51.1 - Why RNNs/51.1 - Why RNNs.mp4
55.6 MB
17.7 - tf-idf (term frequency- inverse document frequency)/17.7 - tf-idf (term frequency- inverse document frequency).mp4
55.4 MB
24.9 - hyperparameters and random search/24.9 - hyperparameters and random search.mp4
55.4 MB
38.12 - Word vectors as MF/38.12 - Word vectors as MF.mp4
55.4 MB
20.14 - Feature Importance and Forward Feature selection/20.14 - Feature Importance and Forward Feature selection.mp4
55.4 MB
11.11 - Chebyshev’s inequality/11.11 - Chebyshev’s inequality.mp4
55.2 MB
20.16 - Handling missing values by imputation/20.16 - Handling missing values by imputation.mp4
55.0 MB
18.13 - Need for Cross validation/18.13 - Need for Cross validation.mp4
54.9 MB
28.8 - RBF-Kernel/28.8 - RBF-Kernel.mp4
54.5 MB
48.20 - Word2Vec Skip-gram/48.20 - Word2Vec Skip-gram.mp4
54.5 MB
20.5 - Train and test set differences/20.5 - Train and test set differences.mp4
54.4 MB
54.2 - Music representation/54.2 - Music representation.mp4
54.2 MB
11.20 - Pearson Correlation Coefficient/11.20 - Pearson Correlation Coefficient.mp4
54.2 MB
49.7 - MLP Initialization/49.7 - MLP Initialization.mp4
53.5 MB
54.7 - Char-RNN with abc-notation Model architecture,Model training/54.7 - Char-RNN with abc-notation Model architecture,Model training..mp4
53.1 MB
38.13 - Eigen-Faces/38.13 - Eigen-Faces.mp4
52.9 MB
38.8 - Clustering as MF/38.8 - Clustering as MF.mp4
52.1 MB
4.1 - Introduction/4.1 - Introduction.mp4
52.0 MB
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/56.10 - Feature engineering on GraphsJaccard & Cosine Similarities.mp4
51.9 MB
21.6 - R-SquaredCoefficient of determination/21.6 - R-SquaredCoefficient of determination.mp4
51.9 MB
51.4 - Types of RNNs/51.4 - Types of RNNs..mp4
51.8 MB
42.8 - Remove duplicates Part 1/42.8 - Remove duplicates Part 1.mp4
51.7 MB
26.2 - Online differentiation tools/26.2 - Online differentiation tools.mp4
51.5 MB
11.15 - Log Normal Distribution/11.15 - Log Normal Distribution.mp4
51.3 MB
42.15 - Code for TF-IDF based product similarity/42.15 - Code for TF-IDF based product similarity.mp4
50.6 MB
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC.mp4
50.6 MB
3.4 - Sets/3.4 - Sets.mp4
50.6 MB
42.10 - Text Pre-Processing Tokenization and Stop-word removal/42.10 - Text Pre-Processing Tokenization and Stop-word removal.mp4
50.5 MB
40.1 - BusinessReal world problem/40.1 - BusinessReal world problem.mp4
50.4 MB
4.4 - Recursive functions/4.4 - Recursive functions.mp4
50.3 MB
8.1 - Space and Time Complexity Find largest number in a list/8.1 - Space and Time Complexity Find largest number in a list.mp4
50.3 MB
56.8 - EDABinary Classification Task/56.8 - EDABinary Classification Task.mp4
50.1 MB
43.3 - Machine Learning problem mapping Data overview/43.3 - Machine Learning problem mapping Data overview..mp4
49.8 MB
48.8 - SGD Recap/48.8 - SGD Recap.mp4
49.6 MB
50.13 - VGGNet/50.13 - VGGNet.mp4
49.4 MB
34.7 - Modeling in the presence of outliers RANSAC/34.7 - Modeling in the presence of outliers RANSAC.mp4
49.4 MB
28.1 - Geometric Intution/28.1 - Geometric Intution.mp4
49.4 MB
11.14 - Bernoulli and Binomial Distribution/11.14 - Bernoulli and Binomial Distribution.mp4
49.3 MB
46.1 - BusinessReal world problem Overview/46.1 - BusinessReal world problem Overview.mp4
49.2 MB
2.9 - Control flow while loop/2.9 - Control flow while loop.mp4
49.1 MB
48.21 - Word2Vec Algorithmic Optimizations/48.21 - Word2Vec Algorithmic Optimizations..mp4
49.0 MB
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming.mp4
49.0 MB
24.8 - Loss minimization interpretation/24.8 - Loss minimization interpretation.mp4
48.8 MB
11.34 - Resampling and Permutation test another example/11.34 - Resampling and Permutation test another example.mp4
48.7 MB
40.8 - EDAAnalysis of tags/40.8 - EDAAnalysis of tags.mp4
48.6 MB
34.8 - Productionizing models/34.8 - Productionizing models.mp4
48.4 MB
45.15 - Logistic Regression with class balancing/45.15 - Logistic Regression with class balancing.mp4
48.4 MB
50.1 - Biological inspiration Visual Cortex/50.1 - Biological inspiration Visual Cortex.mp4
48.4 MB
3.6 - Strings/3.6 - Strings.mp4
48.3 MB
18.16 - How to determine overfitting and underfitting/18.16 - How to determine overfitting and underfitting.mp4
48.3 MB
47.3 - Growth of biological neural networks/47.3 - Growth of biological neural networks.mp4
48.2 MB
48.6 - OptimizersHill-descent analogy in 2D/48.6 - OptimizersHill-descent analogy in 2D.mp4
48.2 MB
42.5 - Overview of the data and Terminology/42.5 - Overview of the data and Terminology.mp4
48.1 MB
56.13 - Connected-components/56.13 - Connected-components.mp4
47.8 MB
33.18 - Kaggle Winners solutions/33.18 - Kaggle Winners solutions.mp4
47.8 MB
35.10 - K-Medoids/35.10 - K-Medoids.mp4
47.5 MB
40.9 - EDAData Preprocessing/40.9 - EDAData Preprocessing.mp4
47.3 MB
11.27 - Confidence interval using bootstrapping/11.27 - Confidence interval using bootstrapping.mp4
47.2 MB
55.7 - Deep-learning Model/55.7 - Deep-learning Model..mp4
47.0 MB
57.12 - WHERE, Comparison operators, NULL/57.12 - WHERE, Comparison operators, NULL.mp4
47.0 MB
57.16 - HAVING/57.16 - HAVING.mp4
47.0 MB
43.14 - ASM Files Feature extraction & Multiprocessing/43.14 - ASM Files Feature extraction & Multiprocessing..mp4
46.9 MB
55.6 - Classical ML models/55.6 - Classical ML models..mp4
46.8 MB
18.17 - Time based splitting/18.17 - Time based splitting.mp4
46.6 MB
18.7 - Cosine Distance & Cosine Similarity/18.7 - Cosine Distance & Cosine Similarity.mp4
46.6 MB
11.36 - Proportional Sampling/11.36 - Proportional Sampling.mp4
46.6 MB
26.5 - Gradient descent geometric intuition/26.5 - Gradient descent geometric intuition.mp4
46.6 MB
18.22 - How to build a kd-tree/18.22 - How to build a kd-tree.mp4
46.6 MB
30.3 - Building a decision TreeEntropy/30.3 - Building a decision TreeEntropy.mp4
46.5 MB
28.4 - Loss function (Hinge Loss) based interpretation/28.4 - Loss function (Hinge Loss) based interpretation.mp4
46.4 MB
18.14 - K-fold cross validation/18.14 - K-fold cross validation.mp4
46.4 MB
45.1 - BusinessReal world problem Overview/45.1 - BusinessReal world problem Overview.mp4
46.3 MB
57.23 - DDLCREATE TABLE/57.23 - DDLCREATE TABLE.mp4
46.3 MB
11.33 - Hypothesis testing another example/11.33 - Hypothesis testing another example.mp4
46.2 MB
18.23 - Find nearest neighbours using kd-tree/18.23 - Find nearest neighbours using kd-tree.mp4
46.2 MB
35.9 - Failure casesLimitations/35.9 - Failure casesLimitations.mp4
46.1 MB
41.15 - ML Models Logistic Regression and Linear SVM/41.15 - ML Models Logistic Regression and Linear SVM.mp4
45.8 MB
47.11 - Activation functions/47.11 - Activation functions.mp4
45.6 MB
26.11 - Why L1 regularization creates sparsity/26.11 - Why L1 regularization creates sparsity.mp4
45.4 MB
37.7 - Advantages and Limitations of DBSCAN/37.7 - Advantages and Limitations of DBSCAN.mp4
44.7 MB
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes.mp4
44.6 MB
8.2 - Binary search/8.2 - Binary search.mp4
44.6 MB
48.1 - Deep Multi-layer perceptrons1980s to 2010s/48.1 - Deep Multi-layer perceptrons1980s to 2010s.mp4
44.5 MB
57.15 - GROUP BY/57.15 - GROUP BY.mp4
44.3 MB
32.2 - Bootstrapped Aggregation (Bagging) Intuition/32.2 - Bootstrapped Aggregation (Bagging) Intuition.mp4
44.0 MB
45.14 - K-Nearest Neighbors Classification/45.14 - K-Nearest Neighbors Classification.mp4
43.7 MB
54.1 - Real-world problem/54.1 - Real-world problem.mp4
43.6 MB
50.4 - Convolution over RGB images/50.4 - Convolution over RGB images..mp4
43.6 MB
42.14 - TF-IDF featurizing text based on word-importance/42.14 - TF-IDF featurizing text based on word-importance.mp4
43.0 MB
47.4 - Diagrammatic representation Logistic Regression and Perceptron/47.4 - Diagrammatic representation Logistic Regression and Perceptron.mp4
42.8 MB
30.14 - Code Samples/30.14 - Code Samples.mp4
42.8 MB
45.12 - Machine Learning ModelsData preparation/45.12 - Machine Learning ModelsData preparation.mp4
42.5 MB
41.10 - EDA Feature analysis/41.10 - EDA Feature analysis..mp4
42.3 MB
11.10 - How distributions are used/11.10 - How distributions are used.mp4
42.2 MB
18.21 - Binary search tree/18.21 - Binary search tree.mp4
42.1 MB
28.5 - Dual form of SVM formulation/28.5 - Dual form of SVM formulation.mp4
42.1 MB
54.6 - Char-RNN with abc-notation State full RNN/54.6 - Char-RNN with abc-notation State full RNN.mp4
42.1 MB
17.9 - Word2Vec/17.9 - Word2Vec..mp4
41.8 MB
2.1 - Python, Anaconda and relevant packages installations/2.1 - Python, Anaconda and relevant packages installations.mp4.mkv
41.7 MB
32.9 - Boosting Intuition/32.9 - Boosting Intuition.mp4
41.6 MB
42.16 - Code for IDF based product similarity/42.16 - Code for IDF based product similarity.mp4
41.5 MB
41.7 - EDA Basic Feature Extraction/41.7 - EDA Basic Feature Extraction.mp4
41.4 MB
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/38.10 - Matrix Factorization for recommender systems Netflix Prize Solution.mp4
41.4 MB
43.10 - ML models – using byte files only Random Model/43.10 - ML models – using byte files only Random Model.mp4
41.3 MB
57.18 - Join and Natural Join/57.18 - Join and Natural Join.mp4
41.3 MB
56.19 - Modeling/56.19 - Modeling.mp4
41.1 MB
34.3 - Calibration Plots/34.3 - Calibration Plots..mp4
41.0 MB
56.6 - EDABasic Stats/56.6 - EDABasic Stats.mp4
40.8 MB
18.8 - How to measure the effectiveness of k-NN/18.8 - How to measure the effectiveness of k-NN.mp4
40.7 MB
57.7 - USE, DESCRIBE, SHOW TABLES/57.7 - USE, DESCRIBE, SHOW TABLES.mp4
40.7 MB
49.10 - Model 3 Batch Normalization/49.10 - Model 3 Batch Normalization..mp4
40.6 MB
23.20 - Code example/23.20 - Code example.mp4
40.5 MB
18.15 - Visualizing train, validation and test datasets/18.15 - Visualizing train, validation and test datasets.mp4
40.5 MB
46.2 - Objectives and Constraints/46.2 - Objectives and Constraints.mp4
40.4 MB
43.18 - ML models on ASM file features/43.18 - ML models on ASM file features.mp4
40.3 MB
33.6 - Keypoints SIFT/33.6 - Keypoints SIFT..mp4
40.2 MB
45.20 - Stacking Classifier/45.20 - Stacking Classifier.mp4
40.1 MB
38.3 - Similarity based Algorithms/38.3 - Similarity based Algorithms.mp4
40.0 MB
53.2 - Datasets#/53.2 - Datasets..mp4
40.0 MB
44.18 - Featurizations for regression/44.18 - Featurizations for regression..mp4
39.9 MB
4.3 - Function arguments/4.3 - Function arguments.mp4
39.9 MB
57.4 - IMDB dataset/57.4 - IMDB dataset.mp4
39.7 MB
47.9 - Training an MLPMemoization/47.9 - Training an MLPMemoization.mp4
39.2 MB
57.5 - Installing MySQL/57.5 - Installing MySQL.mp4
39.0 MB
23.7 - Naive Bayes on Text data/23.7 - Naive Bayes on Text data.mp4
38.8 MB
50.8 - Example CNN LeNet [1998]/50.8 - Example CNN LeNet [1998].mp4
38.6 MB
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/20.7 - Local outlier Factor (Simple solution Mean distance to Knn).mp4
38.6 MB
33.5 - Image histogram/33.5 - Image histogram.mp4
38.6 MB
56.9 - EDATrain and test split/56.9 - EDATrain and test split..mp4
38.5 MB
44.7 - Exploratory Data AnalysisPreliminary data analysis/44.7 - Exploratory Data AnalysisPreliminary data analysis..mp4
38.4 MB
13.7 - Data Preprocessing Column Standardization/13.7 - Data Preprocessing Column Standardization.mp4
38.3 MB
53.1 - Self Driving Car Problem definition/53.1 - Self Driving Car Problem definition..mp4
38.1 MB
46.3 - Mapping to ML problem Data/46.3 - Mapping to ML problem Data.mp4
37.7 MB
54.8 - Char-RNN with abc-notation Music generation/54.8 - Char-RNN with abc-notation Music generation..mp4
37.3 MB
11.26 - C.I for mean of a normal random variable/11.26 - C.I for mean of a normal random variable.mp4
37.3 MB
57.27 - Learning resources/57.27 - Learning resources.mp4
37.2 MB
56.16 - HITS Score/56.16 - HITS Score.mp4
37.1 MB
36.1 - Agglomerative & Divisive, Dendrograms/36.1 - Agglomerative & Divisive, Dendrograms.mp4
37.0 MB
33.1 - Introduction/33.1 - Introduction.mp4
37.0 MB
47.13 - Bias-Variance tradeoff/47.13 - Bias-Variance tradeoff..mp4
36.9 MB
46.4 - Mapping to ML problem dask dataframes/46.4 - Mapping to ML problem dask dataframes.mp4
36.8 MB
23.15 - Handling Numerical features (Gaussian NB)/23.15 - Handling Numerical features (Gaussian NB).mp4
36.7 MB
32.3 - Random Forest and their construction/32.3 - Random Forest and their construction.mp4
36.7 MB
13.9 - MNIST dataset (784 dimensional)/13.9 - MNIST dataset (784 dimensional).mp4
36.5 MB
21.1 - Accuracy/21.1 - Accuracy.mp4
36.5 MB
45.18 - Random-Forest with one-hot encoded features/45.18 - Random-Forest with one-hot encoded features.mp4
36.3 MB
32.17 - Cascading classifiers/32.17 - Cascading classifiers.mp4
36.3 MB
48.11 - OptimizersAdaGrad/48.11 - OptimizersAdaGrad.mp4
36.2 MB
23.12 - Imbalanced data/23.12 - Imbalanced data.mp4
36.2 MB
42.22 - Code for weighted similarity/42.22 - Code for weighted similarity.mp4
36.0 MB
56.14 - Adar Index/56.14 - Adar Index.mp4
35.8 MB
56.7 - EDAFollower and following stats/56.7 - EDAFollower and following stats..mp4
35.7 MB
57.2 - Why SQL/57.2 - Why SQL.mp4
35.7 MB
26.9 - Constrained Optimization & PCA/26.9 - Constrained Optimization & PCA.mp4
35.7 MB
17.6 - uni-gram, bi-gram, n-grams/17.6 - uni-gram, bi-gram, n-grams..mp4
35.6 MB
13.10 - Code to Load MNIST Data Set/13.10 - Code to Load MNIST Data Set.mp4
35.6 MB
23.1 - Conditional probability/23.1 - Conditional probability.mp4
35.6 MB
46.24 - Regression models Train-Test split & Features/46.24 - Regression models Train-Test split & Features.mp4
35.6 MB
33.11 - Feature binning/33.11 - Feature binning.mp4
35.5 MB
23.10 - Bias and Variance tradeoff/23.10 - Bias and Variance tradeoff.mp4
35.4 MB
24.11 - Feature importance and Model interpretability/24.11 - Feature importance and Model interpretability.mp4
35.2 MB
24.12 - Collinearity of features/24.12 - Collinearity of features.mp4
35.2 MB
25.2 - Mathematical formulation/25.2 - Mathematical formulation.mp4
35.1 MB
45.6 - Exploratory Data AnalysisReading data & preprocessing/45.6 - Exploratory Data AnalysisReading data & preprocessing.mp4
35.1 MB
36.2 - Agglomerative Clustering/36.2 - Agglomerative Clustering.mp4
35.0 MB
13.8 - Co-variance of a Data Matrix/13.8 - Co-variance of a Data Matrix.mp4
34.9 MB
50.9 - ImageNet dataset/50.9 - ImageNet dataset..mp4
34.9 MB
42.25 - Using Keras + Tensorflow to extract features/42.25 - Using Keras + Tensorflow to extract features.mp4
34.7 MB
17.8 - Why use log in IDF/17.8 - Why use log in IDF.mp4
34.6 MB
17.3 - Why convert text to a vector/17.3 - Why convert text to a vector.mp4
34.1 MB
14.10 - PCA for dimensionality reduction (not-visualization)/14.10 - PCA for dimensionality reduction (not-visualization).mp4
33.9 MB
40.14 - Logistic regression One VS Rest/40.14 - Logistic regression One VS Rest.mp4
33.8 MB
21.5 - Log-loss/21.5 - Log-loss.mp4
33.7 MB
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction.mp4
33.7 MB
46.20 - Simple moving average/46.20 - Simple moving average.mp4
33.7 MB
7.1 - Getting started with pandas/7.1 - Getting started with pandas.mp4
33.1 MB
25.1 - Geometric intuition of Linear Regression/25.1 - Geometric intuition of Linear Regression.mp4
33.1 MB
56.17 - SVD/56.17 - SVD.mp4
33.0 MB
11.30 - Resampling and permutation test/11.30 - Resampling and permutation test.mp4
33.0 MB
11.17 - Box cox transform/11.17 - Box cox transform.mp4
32.7 MB
49.13 - Hyperparameter tuning in Keras/49.13 - Hyperparameter tuning in Keras..mp4
32.6 MB
43.7 - Exploratory Data Analysis Feature extraction from byte files/43.7 - Exploratory Data Analysis Feature extraction from byte files.mp4
32.4 MB
44.15 - Overview of the modelling strategy/44.15 - Overview of the modelling strategy..mp4
32.3 MB
20.12 - Impact of Scale & Column standardization/20.12 - Impact of Scale & Column standardization.mp4
32.3 MB
35.12 - Code Samples/35.12 - Code Samples.mp4
32.3 MB
45.17 - Linear-SVM/45.17 - Linear-SVM..mp4
32.0 MB
51.5 - Need for LSTMGRU/51.5 - Need for LSTMGRU..mp4
31.9 MB
32.10 - Residuals, Loss functions and gradients/32.10 - Residuals, Loss functions and gradients.mp4
31.8 MB
18.28 - LSH for euclidean distance/18.28 - LSH for euclidean distance.mp4
31.8 MB
35.4 - Metrics for Clustering/35.4 - Metrics for Clustering.mp4
31.7 MB
8.4 - Find elements common in two lists using a HashtableDict/8.4 - Find elements common in two lists using a HashtableDict.mp4
31.5 MB
43.13 - Random Forest and Xgboost/43.13 - Random Forest and Xgboost.mp4
31.5 MB
37.5 - DBSCAN Algorithm/37.5 - DBSCAN Algorithm.mp4
31.5 MB
33.9 - Graph data/33.9 - Graph data.mp4
31.4 MB
45.7 - Exploratory Data AnalysisDistribution of Class-labels/45.7 - Exploratory Data AnalysisDistribution of Class-labels.mp4
31.3 MB
44.8 - Exploratory Data AnalysisSparse matrix representation/44.8 - Exploratory Data AnalysisSparse matrix representation.mp4
31.2 MB
30.13 - Cases/30.13 - Cases.mp4
31.1 MB
46.18 - Data Preparation Time series and Fourier transforms/46.18 - Data Preparation Time series and Fourier transforms..mp4
31.1 MB
2.10 - Control flow for loop/2.10 - Control flow for loop.mp4.mkv
30.9 MB
11.23 - How to use correlations/11.23 - How to use correlations.mp4
30.9 MB
18.9 - TestEvaluation time and space complexity/18.9 - TestEvaluation time and space complexity.mp4
30.8 MB
49.4 - Install TensorFlow/49.4 - Install TensorFlow.mp4
30.6 MB
45.2 - Business objectives and constraints/45.2 - Business objectives and constraints..mp4
30.5 MB
20.13 - Interpretability/20.13 - Interpretability.mp4
30.4 MB
32.11 - Gradient Boosting/32.11 - Gradient Boosting.mp4
30.1 MB
11.19 - Co-variance/11.19 - Co-variance.mp4
30.0 MB
43.4 - Machine Learning problem mapping ML problem/43.4 - Machine Learning problem mapping ML problem.mp4
30.0 MB
49.9 - Model 2 ReLU activation/49.9 - Model 2 ReLU activation..mp4
29.9 MB
26.3 - Maxima and Minima/26.3 - Maxima and Minima.mp4
29.8 MB
20.3 - Multi-class classification/20.3 - Multi-class classification.mp4
29.6 MB
57.11 - DISTINCT/57.11 - DISTINCT.mp4
29.5 MB
51.9 - Bidirectional RNN/51.9 - Bidirectional RNN..mp4
29.1 MB
15.7 - Code example of t-SNE/15.7 - Code example of t-SNE.mp4
29.1 MB
56.3 - Data format & Limitations/56.3 - Data format & Limitations..mp4
29.0 MB
44.1 - BusinessReal world problemProblem definition/44.1 - BusinessReal world problemProblem definition.mp4
28.9 MB
28.7 - Polynomial Kernel/28.7 - Polynomial Kernel.mp4
28.8 MB
44.5 - Exploratory Data AnalysisData preprocessing/44.5 - Exploratory Data AnalysisData preprocessing.mp4
28.6 MB
9.8 - Mean, Variance and Standard Deviation/9.8 - Mean, Variance and Standard Deviation.mp4
28.6 MB
14.3 - Mathematical objective function of PCA/14.3 - Mathematical objective function of PCA.mp4
28.6 MB
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/18.4 - K-Nearest Neighbours Geometric intuition with a toy example.mp4
28.6 MB
33.15 - Feature orthogonality/33.15 - Feature orthogonality.mp4
28.5 MB
48.13 - Adam/48.13 - Adam.mp4
28.4 MB
50.6 - Max-pooling/50.6 - Max-pooling..mp4
28.3 MB
23.9 - Log-probabilities for numerical stability/23.9 - Log-probabilities for numerical stability.mp4
28.3 MB
38.2 - Content based vs Collaborative Filtering/38.2 - Content based vs Collaborative Filtering.mp4
28.2 MB
44.14 - ML ModelsSurprise library/44.14 - ML ModelsSurprise library.mp4
28.2 MB
44.25 - SVD ++ with implicit feedback/44.25 - SVD ++ with implicit feedback.mp4
28.1 MB
49.5 - Online documentation and tutorials/49.5 - Online documentation and tutorials.mp4
28.1 MB
53.4 - Dash-cam images and steering angles/53.4 - Dash-cam images and steering angles..mp4
28.0 MB
33.8 - Relational data/33.8 - Relational data.mp4
28.0 MB
34.4 - Platt’s CalibrationScaling/34.4 - Platt’s CalibrationScaling..mp4
28.0 MB
57.9 - LIMIT, OFFSET/57.9 - LIMIT, OFFSET.mp4
27.9 MB
9.9 - Median/9.9 - Median.mp4
27.9 MB
42.26 - Visual similarity based product similarity/42.26 - Visual similarity based product similarity.mp4
27.6 MB
45.19 - Random-Forest with response-coded features/45.19 - Random-Forest with response-coded features.mp4
27.5 MB
3.2 - Tuples part 1/3.2 - Tuples part 1.mp4
27.4 MB
11.13 - How to randomly sample data points (Uniform Distribution)/11.13 - How to randomly sample data points (Uniform Distribution).mp4
27.4 MB
21.3 - Precision and recall, F1-score/21.3 - Precision and recall, F1-score.mp4
27.3 MB
51.7 - GRUs/51.7 - GRUs..mp4
27.3 MB
44.21 - Surprise Baseline model/44.21 - Surprise Baseline model..mp4
27.2 MB
11.25 - Computing confidence interval given the underlying distribution/11.25 - Computing confidence interval given the underlying distribution.mp4
27.2 MB
35.6 - K-Means Mathematical formulation Objective function/35.6 - K-Means Mathematical formulation Objective function.mp4
27.2 MB
24.6 - L1 regularization and sparsity/24.6 - L1 regularization and sparsity.mp4
27.1 MB
24.14 - Real world cases/24.14 - Real world cases.mp4
27.0 MB
7.2 - Data Frame Basics/7.2 - Data Frame Basics.mp4
27.0 MB
46.7 - Mapping to ML problem Performance metrics/46.7 - Mapping to ML problem Performance metrics.mp4
26.9 MB
42.2 - Plan of action/42.2 - Plan of action.mp4
26.9 MB
11.8 - Sampling distribution & Central Limit theorem/11.8 - Sampling distribution & Central Limit theorem.mp4
26.8 MB
44.13 - Computing Similarity matricesDoes movie-movie similarity work/44.13 - Computing Similarity matricesDoes movie-movie similarity work.mp4
26.8 MB
24.18 - Extensions to Generalized linear models/24.18 - Extensions to Generalized linear models.mp4
26.7 MB
35.7 - K-Means Algorithm/35.7 - K-Means Algorithm..mp4
26.7 MB
53.9 - Batch load the dataset/53.9 - Batch load the dataset..mp4
26.6 MB
24.13 - TestRun time space and time complexity/24.13 - TestRun time space and time complexity.mp4
26.5 MB
50.18 - Code Example MNIST dataset/50.18 - Code Example MNIST dataset..mp4
26.4 MB
41.1 - BusinessReal world problem Problem definition/41.1 - BusinessReal world problem Problem definition.mp4
26.4 MB
41.13 - ML Models Loading Data/41.13 - ML Models Loading Data.mp4
26.3 MB
24.4 - Weight vector/24.4 - Weight vector.mp4
26.3 MB
30.4 - Building a decision TreeInformation Gain/30.4 - Building a decision TreeInformation Gain.mp4
26.2 MB
26.8 - SGD algorithm/26.8 - SGD algorithm.mp4
26.1 MB
34.5 - Isotonic Regression/34.5 - Isotonic Regression.mp4
25.9 MB
42.7 - Understand duplicate rows/42.7 - Understand duplicate rows.mp4
25.9 MB
9.7 - CDF(Cumulative Distribution Function)/9.7 - CDF(Cumulative Distribution Function).mp4
25.8 MB
18.1 - How “Classification” works/18.1 - How “Classification” works.mp4
25.7 MB
46.22 - Exponential weighted moving average/46.22 - Exponential weighted moving average.mp4
25.7 MB
13.5 - Data Preprocessing Feature Normalisation/13.5 - Data Preprocessing Feature Normalisation.mkv
25.7 MB
23.11 - Feature importance and interpretability/23.11 - Feature importance and interpretability.mp4
25.7 MB
41.12 - EDA TF-IDF weighted Word2Vec featurization/41.12 - EDA TF-IDF weighted Word2Vec featurization..mp4
25.6 MB
48.15 - Gradient Checking and clipping/48.15 - Gradient Checking and clipping.mp4
25.6 MB
46.15 - Data PreparationTime binning/46.15 - Data PreparationTime binning.mp4
25.5 MB
57.21 - DMLINSERT/57.21 - DMLINSERT.mp4
25.4 MB
49.11 - Model 4 Dropout/49.11 - Model 4 Dropout..mp4
25.4 MB
35.1 - What is Clustering/35.1 - What is Clustering.mp4
25.2 MB
18.26 - Hashing vs LSH/18.26 - Hashing vs LSH.mp4
25.1 MB
38.9 - Hyperparameter tuning/38.9 - Hyperparameter tuning.mp4
25.1 MB
26.4 - Vector calculus Grad/26.4 - Vector calculus Grad.mp4
25.0 MB
11.21 - Spearman Rank Correlation Coefficient/11.21 - Spearman Rank Correlation Coefficient.mp4
24.9 MB
28.6 - kernel trick/28.6 - kernel trick.mp4
24.9 MB
45.3 - ML problem formulation Data/45.3 - ML problem formulation Data.mp4
24.9 MB
41.8 - EDA Text Preprocessing/41.8 - EDA Text Preprocessing.mp4
24.9 MB
11.7 - Kernel density estimation/11.7 - Kernel density estimation.mp4
24.7 MB
44.2 - Objectives and constraints/44.2 - Objectives and constraints.mp4
24.7 MB
54.11 - Survey blog/54.11 - Survey blog.mp4
24.6 MB
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path..mp4
24.6 MB
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN.mp4
24.6 MB
17.13 - Bi-Grams and n-grams (Code Sample)/17.13 - Bi-Grams and n-grams (Code Sample).mp4
24.5 MB
32.18 - Kaggle competitions vs Real world/32.18 - Kaggle competitions vs Real world.mp4
24.4 MB
11.12 - Discrete and Continuous Uniform distributions/11.12 - Discrete and Continuous Uniform distributions.mp4
24.3 MB
9.3 - Pair plots/9.3 - Pair plots.mp4
24.2 MB
44.20 - Xgboost with 13 features/44.20 - Xgboost with 13 features.mp4
24.1 MB
46.9 - Data Cleaning Trip Duration/46.9 - Data Cleaning Trip Duration..mp4
24.1 MB
41.16 - ML Models XGBoost/41.16 - ML Models XGBoost.mp4
24.0 MB
46.5 - Mapping to ML problem FieldsFeatures/46.5 - Mapping to ML problem FieldsFeatures..mp4
24.0 MB
14.4 - Alternative formulation of PCA Distance minimization/14.4 - Alternative formulation of PCA Distance minimization.mp4
24.0 MB
14.6 - PCA for Dimensionality Reduction and Visualization/14.6 - PCA for Dimensionality Reduction and Visualization.mp4
23.9 MB
18.10 - KNN Limitations/18.10 - KNN Limitations.mp4
23.8 MB
37.6 - Hyper Parameters MinPts and Eps/37.6 - Hyper Parameters MinPts and Eps.mp4
23.7 MB
54.10 - MIDI music generation/54.10 - MIDI music generation..mp4
23.6 MB
43.1 - Businessreal world problem Problem definition/43.1 - Businessreal world problem Problem definition.mp4
23.6 MB
33.17 - Feature slicing/33.17 - Feature slicing.mp4
23.5 MB
42.20 - Code for IDF weighted Word2Vec product similarity/42.20 - Code for IDF weighted Word2Vec product similarity.mp4
23.5 MB
20.9 - Reachability-Distance(A,B)/20.9 - Reachability-Distance(A,B).mp4
23.5 MB
46.19 - Ratios and previous-time-bin values/46.19 - Ratios and previous-time-bin values.mp4
23.4 MB
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM.mp4
23.3 MB
50.7 - CNN Training Optimization/50.7 - CNN Training Optimization.mp4
23.3 MB
9.5 - Histogram and Introduction to PDF(Probability Density Function)/9.5 - Histogram and Introduction to PDF(Probability Density Function).mkv
23.3 MB
32.12 - Regularization by Shrinkage/32.12 - Regularization by Shrinkage.mp4
23.1 MB
9.15 - Multivariate Probability Density, Contour Plot/9.15 - Multivariate Probability Density, Contour Plot.mp4
23.1 MB
30.12 - Regression using Decision Trees/30.12 - Regression using Decision Trees.mp4
23.0 MB
42.21 - Weighted similarity using brand and color/42.21 - Weighted similarity using brand and color.mp4
22.9 MB
11.1 - Introduction to Probability and Statistics/11.1 - Introduction to Probability and Statistics.mp4
22.9 MB
32.7 - Extremely randomized trees/32.7 - Extremely randomized trees.mp4
22.9 MB
49.3 - Google Colaboratory/49.3 - Google Colaboratory..mp4
22.7 MB
55.1 - Human Activity Recognition Problem definition/55.1 - Human Activity Recognition Problem definition.mp4
22.7 MB
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution.mp4
22.6 MB
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec.mp4
22.5 MB
15.6 - t-SNE on MNIST/15.6 - t-SNE on MNIST.mp4
22.5 MB
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/11.28 - Hypothesis testing methodology, Null-hypothesis, p-value.mp4
22.5 MB
40.15 - Sampling data and tags+Weighted models/40.15 - Sampling data and tags+Weighted models..mp4
22.5 MB
56.4 - Mapping to a supervised classification problem/56.4 - Mapping to a supervised classification problem..mp4
22.5 MB
43.11 - k-NN/43.11 - k-NN.mp4
22.4 MB
46.8 - Data Cleaning Latitude and Longitude data/46.8 - Data Cleaning Latitude and Longitude data.mp4
22.3 MB
30.2 - Sample Decision tree/30.2 - Sample Decision tree.mp4
22.3 MB
48.14 - Which algorithm to choose when/48.14 - Which algorithm to choose when.mp4
22.3 MB
4.5 - Lambda functions/4.5 - Lambda functions.mp4
22.2 MB
20.10 - Local reachability-density(A)/20.10 - Local reachability-density(A).mp4
22.2 MB
35.5 - K-Means Geometric intuition, Centroids/35.5 - K-Means Geometric intuition, Centroids.mp4
22.1 MB
28.13 - Cases/28.13 - Cases.mp4
22.1 MB
43.12 - Logistic regression/43.12 - Logistic regression.mp4
22.1 MB
9.10 - Percentiles and Quantiles/9.10 - Percentiles and Quantiles.mp4
22.0 MB
50.10 - Data Augmentation/50.10 - Data Augmentation..mp4
22.0 MB
33.14 - Model specific featurizations/33.14 - Model specific featurizations.mp4
22.0 MB
45.22 - Assignments/45.22 - Assignments..mp4
21.9 MB
40.13 - Featurization/40.13 - Featurization.mp4
21.9 MB
45.21 - Majority Voting classifier/45.21 - Majority Voting classifier.mp4
21.7 MB
9.12 - Box-plot with Whiskers/9.12 - Box-plot with Whiskers.mp4
21.7 MB
48.12 - Optimizers Adadelta andRMSProp/48.12 - Optimizers Adadelta andRMSProp.mp4
21.7 MB
2.7 - Operators/2.7 - Operators.mp4
21.6 MB
41.6 - EDA Basic Statistics/41.6 - EDA Basic Statistics..mp4
21.5 MB
46.29 - Assignment/46.29 - Assignment..mp4
21.5 MB
30.9 - Building a decision TreeCategorical features with many possible values/30.9 - Building a decision TreeCategorical features with many possible values.mp4
21.4 MB
32.5 - Train and run time complexity/32.5 - Train and run time complexity.mp4
21.4 MB
34.6 - Code Samples/34.6 - Code Samples.mp4
21.4 MB
14.2 - Geometric intuition of PCA/14.2 - Geometric intuition of PCA.mp4
21.3 MB
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces.mp4
21.2 MB
55.5 - EDAData visualization using t-SNE/55.5 - EDAData visualization using t-SNE.mp4
21.2 MB
38.7 - Matrix Factorization for feature engineering/38.7 - Matrix Factorization for feature engineering.mp4
21.1 MB
20.4 - k-NN, given a distance or similarity matrix/20.4 - k-NN, given a distance or similarity matrix.mp4
21.1 MB
15.3 - Geometric intuition of t-SNE/15.3 - Geometric intuition of t-SNE.mp4
21.0 MB
28.3 - Why we take values +1 and and -1 for Support vector planes/28.3 - Why we take values +1 and and -1 for Support vector planes.mp4
20.9 MB
33.12 - Interaction variables/33.12 - Interaction variables.mp4
20.9 MB
34.9 - Retraining models periodically/34.9 - Retraining models periodically..mp4
20.8 MB
18.24 - Limitations of Kd tree/18.24 - Limitations of Kd tree.mp4
20.7 MB
42.19 - TF-IDF weighted Word2Vec/42.19 - TF-IDF weighted Word2Vec.mp4
20.7 MB
57.10 - ORDER BY/57.10 - ORDER BY.mp4
20.7 MB
56.5 - Business constraints & Metrics/56.5 - Business constraints & Metrics..mp4
20.6 MB
46.28 - Model comparison/46.28 - Model comparison.mp4
20.6 MB
47.2 - How Biological Neurons work/47.2 - How Biological Neurons work.mp4
20.6 MB
48.10 - Nesterov Accelerated Gradient (NAG)/48.10 - Nesterov Accelerated Gradient (NAG).mp4
20.5 MB
25.3 - Real world Cases/25.3 - Real world Cases.mp4
20.3 MB
56.15 - Kartz Centrality/56.15 - Kartz Centrality.mp4
20.2 MB
15.4 - Crowding Problem/15.4 - Crowding Problem.mp4
20.1 MB
57.22 - DMLUPDATE , DELETE/57.22 - DMLUPDATE , DELETE.mp4
20.1 MB
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis.mp4
20.0 MB
2.6 - Standard Input and Output/2.6 - Standard Input and Output.mp4
20.0 MB
55.4 - EDAUnivariate analysis/55.4 - EDAUnivariate analysis..mp4
19.9 MB
32.6 - BaggingCode Sample/32.6 - BaggingCode Sample.mp4
19.9 MB
46.10 - Data Cleaning Speed/46.10 - Data Cleaning Speed..mp4
19.8 MB
40.11 - Data preparation/40.11 - Data preparation..mp4
19.7 MB
18.5 - Failure cases of KNN/18.5 - Failure cases of KNN.mp4
19.6 MB
48.17 - How to train a Deep MLP/48.17 - How to train a Deep MLP.mp4
19.6 MB
40.4 - Mapping to an ML problemML problem formulation/40.4 - Mapping to an ML problemML problem formulation..mp4
19.6 MB
18.29 - Probabilistic class label/18.29 - Probabilistic class label.mp4
19.6 MB
28.12 - SVM Regression/28.12 - SVM Regression.mp4
19.5 MB
44.28 - Assignments/44.28 - Assignments..mp4
19.5 MB
18.25 - Extensions/18.25 - Extensions.mp4
19.5 MB
11.24 - Confidence interval (C.I) Introduction/11.24 - Confidence interval (C.I) Introduction.mp4
19.5 MB
28.10 - Train and run time complexities/28.10 - Train and run time complexities.mp4
19.4 MB
10.3 - Dot Product and Angle between 2 Vectors/10.3 - Dot Product and Angle between 2 Vectors.mp4
19.4 MB
2.3 - Keywords and identifiers/2.3 - Keywords and identifiers.mp4
19.3 MB
33.4 - Deep learning features LSTM/33.4 - Deep learning features LSTM.mp4
19.3 MB
26.7 - Gradient descent for linear regression/26.7 - Gradient descent for linear regression.mp4
19.2 MB
46.6 - Mapping to ML problem Time series forecastingRegression/46.6 - Mapping to ML problem Time series forecastingRegression.mp4
19.0 MB
30.7 - Building a decision Tree Splitting numerical features/30.7 - Building a decision Tree Splitting numerical features.mp4
18.9 MB
23.19 - Best and worst cases/23.19 - Best and worst cases.mp4
18.9 MB
46.26 - Random Forest regression/46.26 - Random Forest regression.mp4
18.9 MB
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector.mp4
18.8 MB
30.10 - Overfitting and Underfitting/30.10 - Overfitting and Underfitting.mp4
18.6 MB
17.14 - TF-IDF (Code Sample)/17.14 - TF-IDF (Code Sample).mp4
18.5 MB
37.3 - Core, Border and Noise points/37.3 - Core, Border and Noise points.mp4
18.5 MB
18.19 - Weighted k-NN/18.19 - Weighted k-NN.mp4
18.5 MB
45.16 - Logistic Regression without class balancing/45.16 - Logistic Regression without class balancing.mp4
18.4 MB
26.6 - Learning rate/26.6 - Learning rate.mp4
18.3 MB
56.1 - Problem definition/56.1 - Problem definition..mp4
18.2 MB
4.6 - Modules/4.6 - Modules.mp4
18.2 MB
11.2 - Population and Sample/11.2 - Population and Sample.mp4
18.2 MB
56.18 - Weight features/56.18 - Weight features.mp4
18.0 MB
50.19 - Assignment Try various CNN networks on MNIST dataset#/50.19 - Assignment Try various CNN networks on MNIST dataset..mp4
18.0 MB
57.3 - Execution of an SQL statement/57.3 - Execution of an SQL statement..mp4
17.8 MB
40.6 - Hamming loss/40.6 - Hamming loss.mp4
17.6 MB
20.6 - Impact of outliers/20.6 - Impact of outliers.mp4
17.6 MB
30.5 - Building a decision Tree Gini Impurity/30.5 - Building a decision Tree Gini Impurity.mp4
17.6 MB
32.15 - AdaBoost geometric intuition/32.15 - AdaBoost geometric intuition.mp4
17.6 MB
34.1 - Calibration of ModelsNeed for calibration/34.1 - Calibration of ModelsNeed for calibration.mp4
17.4 MB
46.12 - Data Cleaning Fare/46.12 - Data Cleaning Fare.mp4
17.4 MB
13.4 - How to represent a dataset as a Matrix/13.4 - How to represent a dataset as a Matrix..mp4
17.4 MB
32.4 - Bias-Variance tradeoff/32.4 - Bias-Variance tradeoff.mp4
17.4 MB
28.9 - Domain specific Kernels/28.9 - Domain specific Kernels.mp4
17.3 MB
43.20 - Models on all features RandomForest and Xgboost/43.20 - Models on all features RandomForest and Xgboost.mp4
17.2 MB
42.27 - Measuring goodness of our solution AB testing/42.27 - Measuring goodness of our solution AB testing.mp4
17.2 MB
21.8 - Distribution of errors/21.8 - Distribution of errors.mp4
17.2 MB
40.16 - Logistic regression revisited/40.16 - Logistic regression revisited.mp4
17.0 MB
28.11 - nu-SVM control errors and support vectors/28.11 - nu-SVM control errors and support vectors.mp4
17.0 MB
33.10 - Indicator variables/33.10 - Indicator variables.mp4
16.9 MB
41.14 - ML Models Random Model/41.14 - ML Models Random Model.mp4
16.9 MB
43.2 - Businessreal world problem Objectives and constraints/43.2 - Businessreal world problem Objectives and constraints.mp4
16.8 MB
30.11 - Train and Run time complexity/30.11 - Train and Run time complexity.mp4
16.8 MB
53.13 - Extensions/53.13 - Extensions..mp4
16.7 MB
15.1 - What is t-SNE/15.1 - What is t-SNE.mp4
16.7 MB
23.2 - Independent vs Mutually exclusive events/23.2 - Independent vs Mutually exclusive events.mp4
16.7 MB
4.7 - Packages/4.7 - Packages.mp4
16.6 MB
44.9 - Exploratory Data AnalysisAverage ratings for various slices/44.9 - Exploratory Data AnalysisAverage ratings for various slices.mp4
16.5 MB
42.4 - Data folders and paths/42.4 - Data folders and paths.mp4
16.5 MB
18.2 - Data matrix notation/18.2 - Data matrix notation.mp4
16.5 MB
11.5 - Symmetric distribution, Skewness and Kurtosis/11.5 - Symmetric distribution, Skewness and Kurtosis.mp4
16.4 MB
49.14 - Exercise Try different MLP architectures on MNIST dataset/49.14 - Exercise Try different MLP architectures on MNIST dataset..mp4
16.4 MB
2.11 - Control flow break and continue/2.11 - Control flow break and continue.mp4
16.1 MB
53.6 - EDA Steering angles/53.6 - EDA Steering angles.mp4
16.1 MB
51.8 - Deep RNN/51.8 - Deep RNN..mp4
16.1 MB
14.7 - Visualize MNIST dataset/14.7 - Visualize MNIST dataset.mp4
16.0 MB
44.26 - Final models with all features and predictors/44.26 - Final models with all features and predictors..mp4
16.0 MB
20.19 - Intuitive understanding of bias-variance/20.19 - Intuitive understanding of bias-variance..mp4
16.0 MB
57.17 - Order of keywords#/57.17 - Order of keywords..mp4
15.9 MB
44.24 - Matrix Factorization models using Surprise/44.24 - Matrix Factorization models using Surprise.mp4
15.7 MB
40.18 - Assignments/40.18 - Assignments..mp4
15.6 MB
46.23 - Results/46.23 - Results..mp4
15.6 MB
46.21 - Weighted Moving average/46.21 - Weighted Moving average..mp4
15.5 MB
15.2 - Neighborhood of a point, Embedding/15.2 - Neighborhood of a point, Embedding.mp4
15.4 MB
20.21 - best and wrost case of algorithm/20.21 - best and wrost case of algorithm.mp4
15.3 MB
9.16 - Exercise Perform EDA on Haberman dataset/9.16 - Exercise Perform EDA on Haberman dataset.mp4
15.2 MB
26.12 - Assignment 6 Implement SGD for linear regression/26.12 - Assignment 6 Implement SGD for linear regression.mp4
15.1 MB
9.6 - Univariate Analysis using PDF/9.6 - Univariate Analysis using PDF.mp4
15.1 MB
2.8 - Control flow if else/2.8 - Control flow if else.mp4
15.0 MB
32.13 - Train and Run time complexity/32.13 - Train and Run time complexity.mp4
14.9 MB
18.3 - Classification vs Regression (examples)/18.3 - Classification vs Regression (examples).mp4
14.8 MB
11.32 - Code Snippet K-S Test/11.32 - Code Snippet K-S Test.mp4
14.7 MB
8.3 - Find elements common in two lists/8.3 - Find elements common in two lists.mp4
14.6 MB
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation).mp4
14.5 MB
32.8 - Random Tree Cases/32.8 - Random Tree Cases.mp4
14.5 MB
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D).mp4
14.5 MB
38.11 - Cold Start problem/38.11 - Cold Start problem.mp4
14.4 MB
9.2 - 3D scatter plot/9.2 - 3D scatter plot.mp4
14.4 MB
32.1 - What are ensembles/32.1 - What are ensembles.mp4
14.3 MB
57.24 - DDLALTER ADD, MODIFY, DROP/57.24 - DDLALTER ADD, MODIFY, DROP.mp4
14.3 MB
44.12 - Computing Similarity matricesMovie-Movie similarity/44.12 - Computing Similarity matricesMovie-Movie similarity.mp4
14.3 MB
26.10 - Logistic regression formulation revisited/26.10 - Logistic regression formulation revisited.mp4
14.1 MB
42.3 - Amazon product advertising API/42.3 - Amazon product advertising API.mp4
13.9 MB
18.20 - Voronoi diagram/18.20 - Voronoi diagram.mp4
13.9 MB
42.23 - Building a real world solution/42.23 - Building a real world solution.mp4
13.8 MB
54.9 - Char-RNN with abc-notation Generate tabla music/54.9 - Char-RNN with abc-notation Generate tabla music.mp4
13.6 MB
18.18 - k-NN for regression/18.18 - k-NN for regression.mp4
13.5 MB
40.3 - Mapping to an ML problem Data overview/40.3 - Mapping to an ML problem Data overview.mp4
13.5 MB
23.13 - Outliers/23.13 - Outliers.mp4
13.5 MB
11.22 - Correlation vs Causation/11.22 - Correlation vs Causation.mp4
13.5 MB
44.6 - Exploratory Data AnalysisTemporal Train-Test split/44.6 - Exploratory Data AnalysisTemporal Train-Test split..mp4
13.3 MB
2.4 - comments, indentation and statements/2.4 - comments, indentation and statements.mp4
13.2 MB
41.3 - Mapping to an ML problem Data overview/41.3 - Mapping to an ML problem Data overview.mp4
13.2 MB
37.2 - MinPts and Eps Density/37.2 - MinPts and Eps Density.mp4
13.2 MB
37.4 - Density edge and Density connected points/37.4 - Density edge and Density connected points..mp4
13.1 MB
44.4 - Mapping to an ML problemML problem formulation/44.4 - Mapping to an ML problemML problem formulation.mp4
13.0 MB
51.11 - Exercise Amazon Fine Food reviews LSTM model/51.11 - Exercise Amazon Fine Food reviews LSTM model..mp4
12.9 MB
13.6 - Mean of a data matrix/13.6 - Mean of a data matrix.mp4
12.7 MB
21.7 - Median absolute deviation (MAD)/21.7 - Median absolute deviation (MAD).mp4
12.7 MB
36.5 - Limitations of Hierarchical Clustering/36.5 - Limitations of Hierarchical Clustering.mp4
12.5 MB
37.9 - Code samples/37.9 - Code samples..mp4
12.5 MB
44.27 - Comparison between various models/44.27 - Comparison between various models..mp4
12.2 MB
41.2 - Business objectives and constraints/41.2 - Business objectives and constraints..mp4
12.1 MB
37.1 - Density based clustering/37.1 - Density based clustering.mp4
12.1 MB
53.3 - Data understanding & Analysis Files and folders/53.3 - Data understanding & Analysis Files and folders..mp4
12.0 MB
46.13 - Data Cleaning Remove all outlierserroneous points/46.13 - Data Cleaning Remove all outlierserroneous points.mp4
11.9 MB
36.6 - Code sample/36.6 - Code sample.mp4
11.9 MB
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/57.25 - DDLDROP TABLE, TRUNCATE, DELETE.mp4
11.8 MB
46.17 - Data PreparationSmoothing time-series data cont/46.17 - Data PreparationSmoothing time-series data cont...mp4
11.6 MB
11.6 - Standard normal variate (Z) and standardization/11.6 - Standard normal variate (Z) and standardization.mp4
11.6 MB
10.9 - Square ,Rectangle/10.9 - Square ,Rectangle.mp4
11.5 MB
41.5 - Mapping to an ML problem Train-test split/41.5 - Mapping to an ML problem Train-test split.mp4
11.5 MB
43.5 - Machine Learning problem mapping Train and test splitting/43.5 - Machine Learning problem mapping Train and test splitting.mp4
11.4 MB
55.3 - Data cleaning & preprocessing/55.3 - Data cleaning & preprocessing.mp4
11.4 MB
24.10 - Column Standardization/24.10 - Column Standardization.mp4
11.4 MB
53.7 - Mean Baseline model simple/53.7 - Mean Baseline model simple.mp4
11.4 MB
20.1 - Introduction/20.1 - Introduction.mp4
11.4 MB
3.3 - Tuples part-2/3.3 - Tuples part-2.mp4
11.2 MB
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D).mp4
11.2 MB
45.5 - ML problem formulation Train, CV and Test data construction/45.5 - ML problem formulation Train, CV and Test data construction.mp4
11.1 MB
35.11 - Determining the right K/35.11 - Determining the right K.mp4
11.0 MB
44.16 - Data Sampling/44.16 - Data Sampling..mp4
11.0 MB
46.16 - Data PreparationSmoothing time-series data/46.16 - Data PreparationSmoothing time-series data..mp4
10.9 MB
41.17 - Assignments/41.17 - Assignments.mp4
10.9 MB
40.2 - Business objectives and constraints/40.2 - Business objectives and constraints.mp4
10.9 MB
44.10 - Exploratory Data AnalysisCold start problem/44.10 - Exploratory Data AnalysisCold start problem.mp4
10.7 MB
56.12 - Shortest Path/56.12 - Shortest Path.mp4
10.7 MB
46.25 - Linear regression/46.25 - Linear regression..mp4
10.5 MB
30.8 - Feature standardization/30.8 - Feature standardization.mp4
10.3 MB
33.13 - Mathematical transforms/33.13 - Mathematical transforms.mp4
10.2 MB
44.22 - Xgboost + 13 features +Surprise baseline model/44.22 - Xgboost + 13 features +Surprise baseline model.mp4
10.1 MB
44.3 - Mapping to an ML problemData overview/44.3 - Mapping to an ML problemData overview..mp4
10.1 MB
43.17 - t-SNE analysis/43.17 - t-SNE analysis..mp4
10.1 MB
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample).mp4
10.0 MB
41.4 - Mapping to an ML problem ML problem and performance metric/41.4 - Mapping to an ML problem ML problem and performance metric..mp4
10.0 MB
14.8 - Limitations of PCA/14.8 - Limitations of PCA.mp4.mkv
9.9 MB
33.7 - Deep learning features CNN/33.7 - Deep learning features CNN.mp4
9.8 MB
43.21 - Assignments/43.21 - Assignments..mp4
9.8 MB
14.1 - Why learn PCA/14.1 - Why learn PCA.mp4
9.8 MB
36.4 - Time and Space Complexity/36.4 - Time and Space Complexity.mp4
9.6 MB
33.16 - Domain specific featurizations/33.16 - Domain specific featurizations.mp4
9.1 MB
41.11 - EDA Data Visualization T-SNE/41.11 - EDA Data Visualization T-SNE..mp4
9.1 MB
42.11 - Stemming/42.11 - Stemming.mp4
9.1 MB
43.16 - Univariate analysis/43.16 - Univariate analysis.mp4
9.0 MB
43.19 - Models on all features t-SNE/43.19 - Models on all features t-SNE.mp4
9.0 MB
20.8 - k distance/20.8 - k distance.mp4
8.9 MB
13.2 - Row Vector and Column Vector/13.2 - Row Vector and Column Vector.mp4
8.7 MB
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/55.8 - Exercise Build deeper LSTM models and hyper-param tune them.mp4
8.7 MB
43.6 - Exploratory Data Analysis Class distribution/43.6 - Exploratory Data Analysis Class distribution..mp4
8.6 MB
10.4 - Projection and Unit Vector/10.4 - Projection and Unit Vector.mp4
8.6 MB
46.27 - Xgboost Regression/46.27 - Xgboost Regression.mp4
8.5 MB
35.2 - Unsupervised learning/35.2 - Unsupervised learning.mp4
8.5 MB
9.13 - Violin Plots/9.13 - Violin Plots.mp4
8.3 MB
35.13 - Time and space complexity/35.13 - Time and space complexity.mp4
8.2 MB
37.8 - Time and Space Complexity/37.8 - Time and Space Complexity.mp4
8.1 MB
53.14 - Assignment/53.14 - Assignment..mp4
7.9 MB
23.14 - Missing values/23.14 - Missing values.mp4
7.6 MB
38.5 - Matrix Factorization NMF/38.5 - Matrix Factorization NMF.mp4
7.4 MB
46.11 - Data Cleaning Distance/46.11 - Data Cleaning Distance..mp4
7.2 MB
40.12 - Train-Test Split/40.12 - Train-Test Split.mp4
7.1 MB
40.17 - Why not use advanced techniques/40.17 - Why not use advanced techniques.mp4
7.0 MB
57.6 - Load IMDB data/57.6 - Load IMDB data..mp4
6.9 MB
44.19 - Data transformation for Surprise/44.19 - Data transformation for Surprise..mp4
6.8 MB
23.17 - Similarity or Distance matrix/23.17 - Similarity or Distance matrix.mp4
6.7 MB
43.9 - Exploratory Data Analysis Train-Test class distribution/43.9 - Exploratory Data Analysis Train-Test class distribution.mp4
6.4 MB
10.1 - Why learn it/10.1 - Why learn it .mp4
6.3 MB
10.10 - Hyper Cube,Hyper Cuboid/10.10 - Hyper Cube,Hyper Cuboid.mp4
6.2 MB
13.3 - How to represent a data set/13.3 - How to represent a data set.mp4
5.6 MB
53.5 - Split the dataset Train vs Test/53.5 - Split the dataset Train vs Test.mp4
5.6 MB
23.18 - Large dimensionality/23.18 - Large dimensionality.mp4
5.5 MB
2.2 - Why learn Python/2.2 - Why learn Python.mp4
5.4 MB
13.1 - What is Dimensionality reduction/13.1 - What is Dimensionality reduction.mp4
4.8 MB
43.15 - File-size feature/43.15 - File-size feature.mp4
4.7 MB
44.17 - Google drive with intermediate files/44.17 - Google drive with intermediate files.mp4
4.7 MB
23.16 - Multiclass classification/23.16 - Multiclass classification.mp4
4.6 MB
9.4 - Limitations of Pair Plots/9.4 - Limitations of Pair Plots.mp4.webm
3.9 MB
58.1 - AD-Click Predicition/out_files/A.style.css.pagespeed.cf.2TMGnQDExI.css
924.9 kB
58.1 - AD-Click Predicition/out.html
806.5 kB
58.1 - AD-Click Predicition/out_files/main.min.js.pagespeed.jm.O-LzTnDPzd.js.download
328.6 kB
58.1 - AD-Click Predicition/out_files/recaptcha__en.js.download
263.6 kB
58.1 - AD-Click Predicition/out_files/286970511789757
185.5 kB
17.17 - Assignment-2 Apply t-SNE/out.pdf
183.2 kB
21.9 - Assignment-3 Apply k-Nearest Neighbor/out.pdf
143.3 kB
58.1 - AD-Click Predicition/out_files/styles__ltr.css
139.9 kB
32.19 - Assignment-9 Apply Random Forests & GBDT/out.pdf
132.0 kB
24.17 - Assignment-5 Apply Logistic Regression/out.pdf
129.2 kB
28.15 - Assignment-7 Apply SVM/out.pdf
128.1 kB
30.15 - Assignment-8 Apply Decision Trees/out.pdf
126.3 kB
23.21 - Assignment-4 Apply Naive Bayes/out.pdf
119.4 kB
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/out.pdf
118.7 kB
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/out.pdf
118.7 kB
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/out.pdf
118.0 kB
38.15 - Assignment-11 Apply Truncated SVD/out.pdf
115.0 kB
58.1 - AD-Click Predicition/out_files/gtm.js.download
109.4 kB
59.1 - Revision Questions/out.pdf
99.1 kB
58.1 - AD-Click Predicition/out_files/jquery.js.pagespeed.jm.pPCPAKkkss.js.download
97.1 kB
58.1 - AD-Click Predicition/out_files/A.eduma.1539063072.css.pagespeed.cf.YI_OezikIu.css
72.2 kB
58.1 - AD-Click Predicition/out_files/A.animate.css.pagespeed.cf.DpYNIfRuT1.css
71.9 kB
59.2 - Questions/out.pdf
70.4 kB
58.1 - AD-Click Predicition/out_files/custom-script-v2.js.pagespeed.jm.ixuIZPaNLR.js.download
59.6 kB
58.1 - AD-Click Predicition/out_files/fbevents.js.download
52.0 kB
58.1 - AD-Click Predicition/out_files/wp-includes.download
44.7 kB
58.1 - AD-Click Predicition/out_files/wp-includes,_js,_jquery,_jquery-migrate..download
44.2 kB
58.1 - AD-Click Predicition/out_files/analytics.js.download
44.1 kB
52.1 - Questions and Answers/out.pdf
39.5 kB
1.1 - How to Learn from Appliedaicourse/out.pdf
36.7 kB
9.7 - CDF(Cumulative Distribution Function)/out.pdf
31.2 kB
11.37 - Revision Questions/out.pdf
29.8 kB
58.1 - AD-Click Predicition/out_files/anchor.html
28.8 kB
58.1 - AD-Click Predicition/out_files/contact-form-7.js.download
28.2 kB
2.9 - Control flow while loop/out.pdf
28.2 kB
20.20 - Revision Questions/out.pdf
27.5 kB
3.1 - Lists/out.pdf
27.0 kB
23.22 - Revision Questions/out.pdf
26.8 kB
18.32 - Revision Questions/out.pdf
26.4 kB
58.1 - AD-Click Predicition/out_files/css
25.9 kB
27.1 - Questions & Answers/out.pdf
25.7 kB
29.1 - Questions & Answers/out.pdf
24.8 kB
10.11 - Revision Questions/out.pdf
24.6 kB
26.13 - Revision questions/out.pdf
24.6 kB
58.1 - AD-Click Predicition/out_files/A.bootstrap-social.css.pagespeed.cf.ZSRyzM_sut.css
24.3 kB
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/out.pdf
24.1 kB
59.3 - External resources for Interview Questions/out.pdf
23.8 kB
37.11 - Revision Questions/out.pdf
23.7 kB
58.1 - AD-Click Predicition/out_files/f.txt
23.6 kB
32.20 - Revision Questions/out.pdf
23.5 kB
58.1 - AD-Click Predicition/out_files/A.lsow-frontend.css.pagespeed.cf.V5z-mTvcVs.css
23.2 kB
21.10 - Revision Questions/out.pdf
23.1 kB
17.4 - Bag of Words (BoW)/out.pdf
23.0 kB
38.16 - Revision Questions/out.pdf
23.0 kB
28.16 - Revision Questions/out.pdf
22.8 kB
30.16 - Revision Questions/out.pdf
22.8 kB
2.1 - Python, Anaconda and relevant packages installations/out.pdf
22.7 kB
32.10 - Residuals, Loss functions and gradients/out.pdf
22.6 kB
19.1 - Questions & Answers/out.pdf
22.5 kB
9.16 - Exercise Perform EDA on Haberman dataset/out.pdf
22.3 kB
31.1 - Questions & Answers/out.pdf
22.0 kB
17.8 - Why use log in IDF/out.pdf
21.9 kB
45.14 - K-Nearest Neighbors Classification/out.pdf
21.6 kB
17.11 - Bag of Words( Code Sample)/out.pdf
21.5 kB
39.1 - Questions & Answers/out.pdf
21.4 kB
16.1 - Questions & Answers/out.pdf
21.3 kB
51.10 - Code example IMDB Sentiment classification/out.pdf
21.1 kB
48.2 - Dropout layers & Regularization/out.pdf
21.1 kB
17.14 - TF-IDF (Code Sample)/out.pdf
21.0 kB
58.1 - AD-Click Predicition/out_files/www-widgetapi.js.download
20.7 kB
28.5 - Dual form of SVM formulation/out.pdf
20.6 kB
15.8 - Revision Questions/out.pdf
20.6 kB
48.13 - Adam/out.pdf
20.5 kB
22.1 - Questions & Answers/out.pdf
20.3 kB
14.9 - PCA Code example/out.pdf
19.7 kB
5.2 - Numerical operations on Numpy/out.pdf
19.6 kB
35.11 - Determining the right K/out.pdf
19.5 kB
4.6 - Modules/out.pdf
18.8 kB
42.19 - TF-IDF weighted Word2Vec/out.pdf
18.6 kB
18.31 - Code SampleCross Validation/out.pdf
18.4 kB
48.11 - OptimizersAdaGrad/out.pdf
18.4 kB
11.5 - Symmetric distribution, Skewness and Kurtosis/out.pdf
18.2 kB
46.18 - Data Preparation Time series and Fourier transforms/out.pdf
18.2 kB
11.24 - Confidence interval (C.I) Introduction/out.pdf
18.0 kB
28.4 - Loss function (Hinge Loss) based interpretation/out.pdf
17.9 kB
5.1 - Numpy Introduction/out.pdf
17.8 kB
2.8 - Control flow if else/out.pdf
17.6 kB
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/out.pdf
17.5 kB
11.11 - Chebyshev’s inequality/out.pdf
17.3 kB
18.22 - How to build a kd-tree/out.pdf
17.2 kB
7.3 - Key Operations on Data Frames/out.pdf
17.0 kB
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/out.pdf
16.8 kB
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/out.pdf
16.8 kB
17.12 - Text Preprocessing( Code Sample)/out.pdf
16.8 kB
17.13 - Bi-Grams and n-grams (Code Sample)/out.pdf
16.8 kB
17.15 - Word2Vec (Code Sample)/out.pdf
16.8 kB
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/out.pdf
16.8 kB
17.2 - Data Cleaning Deduplication/out.pdf
16.8 kB
17.3 - Why convert text to a vector/out.pdf
16.8 kB
17.5 - Text Preprocessing Stemming/out.pdf
16.8 kB
17.6 - uni-gram, bi-gram, n-grams/out.pdf
16.8 kB
17.7 - tf-idf (term frequency- inverse document frequency)/out.pdf
16.8 kB
17.9 - Word2Vec/out.pdf
16.8 kB
30.4 - Building a decision TreeInformation Gain/out.pdf
16.6 kB
58.1 - AD-Click Predicition/out_files/underscore.min.js.pagespeed.jm.mGiwqwtvc5.js.download
16.2 kB
12.1 - Questions & Answers/out.pdf
16.1 kB
58.1 - AD-Click Predicition/out_files/frontend.download
15.0 kB
4.7 - Packages/out.pdf
14.8 kB
11.34 - Resampling and Permutation test another example/out.pdf
14.6 kB
6.1 - Getting started with Matplotlib/out.pdf
14.6 kB
2.10 - Control flow for loop/out.pdf
14.6 kB
2.11 - Control flow break and continue/out.pdf
14.6 kB
15.7 - Code example of t-SNE/out.pdf
14.5 kB
57.6 - Load IMDB data/out.pdf
13.7 kB
54.4 - Char-RNN with abc-notation Data preparation/out.pdf
13.5 kB
58.1 - AD-Click Predicition/out_files/webfont.js.download
13.2 kB
46.23 - Results/out.pdf
13.2 kB
50.1 - Biological inspiration Visual Cortex/out.pdf
13.2 kB
11.31 - K-S Test for similarity of two distributions/out.pdf
13.1 kB
13.8 - Co-variance of a Data Matrix/out.pdf
12.7 kB
14.3 - Mathematical objective function of PCA/out.pdf
12.6 kB
50.5 - Convolutional layer/out.pdf
12.5 kB
28.12 - SVM Regression/out.pdf
12.4 kB
54.2 - Music representation/out.pdf
12.3 kB
57.5 - Installing MySQL/out.pdf
12.3 kB
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/out.pdf
12.1 kB
11.30 - Resampling and permutation test/out.pdf
12.1 kB
50.12 - AlexNet/out.pdf
12.0 kB
37.7 - Advantages and Limitations of DBSCAN/out.pdf
11.9 kB
58.1 - AD-Click Predicition/out_files/u01meJHOm6aDdkm65zsgPs06YC1LmxK3T-HIHDDIdgw.js.download
11.9 kB
50.15 - Inception Network/out.pdf
11.9 kB
25.2 - Mathematical formulation/out.pdf
11.7 kB
53.2 - Datasets/out.pdf
11.7 kB
41.9 - EDA Advanced Feature Extraction/out.pdf
11.7 kB
23.10 - Bias and Variance tradeoff/out.pdf
11.7 kB
48.10 - Nesterov Accelerated Gradient (NAG)/out.pdf
11.7 kB
38.14 - Code example/out.pdf
11.6 kB
34.10 - AB testing/out.pdf
11.6 kB
50.18 - Code Example MNIST dataset/out.pdf
11.6 kB
47.7 - Training a single-neuron model/out.pdf
11.5 kB
11.17 - Box cox transform/out.pdf
11.4 kB
14.4 - Alternative formulation of PCA Distance minimization/out.pdf
11.4 kB
38.13 - Eigen-Faces/out.pdf
11.4 kB
48.9 - Batch SGD with momentum/out.pdf
11.3 kB
37.9 - Code samples/out.pdf
11.2 kB
44.14 - ML ModelsSurprise library/out.pdf
11.2 kB
34.2 - Productionization and deployment of Machine Learning Models/out.pdf
11.2 kB
37.8 - Time and Space Complexity/out.pdf
11.2 kB
51.7 - GRUs/out.pdf
11.1 kB
49.1 - Tensorflow and Keras overview/out.pdf
11.0 kB
51.4 - Types of RNNs/out.pdf
11.0 kB
38.6 - Matrix Factorization for Collaborative filtering/out.pdf
11.0 kB
50.8 - Example CNN LeNet [1998]/out.pdf
11.0 kB
44.21 - Surprise Baseline model/out.pdf
11.0 kB
50.2 - ConvolutionEdge Detection on images/out.pdf
11.0 kB
50.14 - Residual Network/out.pdf
11.0 kB
54.10 - MIDI music generation/out.pdf
11.0 kB
51.5 - Need for LSTMGRU/out.pdf
10.9 kB
36.6 - Code sample/out.pdf
10.9 kB
9.3 - Pair plots/out.pdf
10.7 kB
48.12 - Optimizers Adadelta andRMSProp/out.pdf
10.7 kB
34.6 - Code Samples/out.pdf
10.7 kB
50.16 - What is Transfer learning/out.pdf
10.7 kB
50.11 - Convolution Layers in Keras/out.pdf
10.7 kB
44.8 - Exploratory Data AnalysisSparse matrix representation/out.pdf
10.6 kB
50.4 - Convolution over RGB images/out.pdf
10.6 kB
45.10 - Univariate AnalysisVariation Feature/out.pdf
10.5 kB
26.9 - Constrained Optimization & PCA/out.pdf
10.5 kB
35.8 - How to initialize K-Means++/out.pdf
10.5 kB
37.3 - Core, Border and Noise points/out.pdf
10.5 kB
36.1 - Agglomerative & Divisive, Dendrograms/out.pdf
10.5 kB
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/out.pdf
10.5 kB
41.17 - Assignments/out.pdf
10.5 kB
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/out.pdf
10.4 kB
40.18 - Assignments/out.pdf
10.4 kB
48.14 - Which algorithm to choose when/out.pdf
10.4 kB
9.2 - 3D scatter plot/out.pdf
10.4 kB
9.4 - Limitations of Pair Plots/out.pdf
10.4 kB
9.5 - Histogram and Introduction to PDF(Probability Density Function)/out.pdf
10.4 kB
9.6 - Univariate Analysis using PDF/out.pdf
10.4 kB
9.8 - Mean, Variance and Standard Deviation/out.pdf
10.4 kB
53.10 - NVIDIA’s end to end CNN model/out.pdf
10.4 kB
24.14 - Real world cases/out.pdf
10.4 kB
30.2 - Sample Decision tree/out.pdf
10.4 kB
49.14 - Exercise Try different MLP architectures on MNIST dataset/out.pdf
10.4 kB
47.12 - Vanishing Gradient problem/out.pdf
10.4 kB
51.6 - LSTM/out.pdf
10.3 kB
36.3 - Proximity methods Advantages and Limitations/out.pdf
10.3 kB
36.4 - Time and Space Complexity/out.pdf
10.3 kB
14.2 - Geometric intuition of PCA/out.pdf
10.3 kB
4.1 - Introduction/out.pdf
10.3 kB
36.2 - Agglomerative Clustering/out.pdf
10.3 kB
54.11 - Survey blog/out.pdf
10.3 kB
47.11 - Activation functions/out.pdf
10.3 kB
48.21 - Word2Vec Algorithmic Optimizations/out.pdf
10.2 kB
55.2 - Dataset understanding/out.pdf
10.2 kB
8.1 - Space and Time Complexity Find largest number in a list/out.pdf
10.2 kB
8.2 - Binary search/out.pdf
10.2 kB
8.3 - Find elements common in two lists/out.pdf
10.2 kB
8.4 - Find elements common in two lists using a HashtableDict/out.pdf
10.2 kB
35.4 - Metrics for Clustering/out.pdf
10.2 kB
54.1 - Real-world problem/out.pdf
10.1 kB
50.9 - ImageNet dataset/out.pdf
10.1 kB
50.7 - CNN Training Optimization/out.pdf
10.1 kB
32.9 - Boosting Intuition/out.pdf
10.0 kB
2.3 - Keywords and identifiers/out.pdf
10.0 kB
42.10 - Text Pre-Processing Tokenization and Stop-word removal/out.pdf
10.0 kB
42.11 - Stemming/out.pdf
10.0 kB
42.12 - Text based product similarity Converting text to an n-D vector bag of words/out.pdf
10.0 kB
42.13 - Code for bag of words based product similarity/out.pdf
10.0 kB
42.14 - TF-IDF featurizing text based on word-importance/out.pdf
10.0 kB
42.15 - Code for TF-IDF based product similarity/out.pdf
10.0 kB
42.16 - Code for IDF based product similarity/out.pdf
10.0 kB
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/out.pdf
10.0 kB
42.18 - Code for Average Word2Vec product similarity/out.pdf
10.0 kB
42.2 - Plan of action/out.pdf
10.0 kB
42.20 - Code for IDF weighted Word2Vec product similarity/out.pdf
10.0 kB
42.21 - Weighted similarity using brand and color/out.pdf
10.0 kB
42.22 - Code for weighted similarity/out.pdf
10.0 kB
42.23 - Building a real world solution/out.pdf
10.0 kB
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/out.pdf
10.0 kB
42.25 - Using Keras + Tensorflow to extract features/out.pdf
10.0 kB
42.26 - Visual similarity based product similarity/out.pdf
10.0 kB
42.27 - Measuring goodness of our solution AB testing/out.pdf
10.0 kB
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/out.pdf
10.0 kB
42.3 - Amazon product advertising API/out.pdf
10.0 kB
42.4 - Data folders and paths/out.pdf
10.0 kB
42.5 - Overview of the data and Terminology/out.pdf
10.0 kB
42.6 - Data cleaning and understandingMissing data in various features/out.pdf
10.0 kB
42.7 - Understand duplicate rows/out.pdf
10.0 kB
42.8 - Remove duplicates Part 1/out.pdf
10.0 kB
42.9 - Remove duplicates Part 2/out.pdf
10.0 kB
25.4 - Code sample for Linear Regression/out.pdf
10.0 kB
7.1 - Getting started with pandas/out.pdf
10.0 kB
7.2 - Data Frame Basics/out.pdf
10.0 kB
11.13 - How to randomly sample data points (Uniform Distribution)/out.pdf
10.0 kB
11.27 - Confidence interval using bootstrapping/out.pdf
10.0 kB
11.32 - Code Snippet K-S Test/out.pdf
10.0 kB
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/out.pdf
10.0 kB
13.1 - What is Dimensionality reduction/out.pdf
10.0 kB
13.10 - Code to Load MNIST Data Set/out.pdf
10.0 kB
13.3 - How to represent a data set/out.pdf
10.0 kB
14.10 - PCA for dimensionality reduction (not-visualization)/out.pdf
10.0 kB
2.4 - comments, indentation and statements/out.pdf
10.0 kB
2.5 - Variables and data types in Python/out.pdf
10.0 kB
2.6 - Standard Input and Output/out.pdf
10.0 kB
2.7 - Operators/out.pdf
10.0 kB
3.2 - Tuples part 1/out.pdf
10.0 kB
3.3 - Tuples part-2/out.pdf
10.0 kB
3.4 - Sets/out.pdf
10.0 kB
3.5 - Dictionary/out.pdf
10.0 kB
3.6 - Strings/out.pdf
10.0 kB
4.10 - Debugging Python/out.pdf
10.0 kB
4.2 - Types of functions/out.pdf
10.0 kB
4.3 - Function arguments/out.pdf
10.0 kB
4.4 - Recursive functions/out.pdf
10.0 kB
4.5 - Lambda functions/out.pdf
10.0 kB
4.8 - File Handling/out.pdf
10.0 kB
4.9 - Exception Handling/out.pdf
10.0 kB
9.1 - Introduction to IRIS dataset and 2D scatter plot/out.pdf
10.0 kB
9.10 - Percentiles and Quantiles/out.pdf
10.0 kB
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/out.pdf
10.0 kB
9.12 - Box-plot with Whiskers/out.pdf
10.0 kB
9.13 - Violin Plots/out.pdf
10.0 kB
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/out.pdf
10.0 kB
9.15 - Multivariate Probability Density, Contour Plot/out.pdf
10.0 kB
9.9 - Median/out.pdf
10.0 kB
49.5 - Online documentation and tutorials/out.pdf
10.0 kB
46.29 - Assignment/out.pdf
10.0 kB
50.17 - Code example Cats vs Dogs/out.pdf
10.0 kB
10.3 - Dot Product and Angle between 2 Vectors/out.pdf
10.0 kB
44.28 - Assignments/out.pdf
9.9 kB
43.21 - Assignments/out.pdf
9.9 kB
56.1 - Problem definition/out.pdf
9.9 kB
43.14 - ASM Files Feature extraction & Multiprocessing/out.pdf
9.9 kB
13.9 - MNIST dataset (784 dimensional)/out.pdf
9.9 kB
54.9 - Char-RNN with abc-notation Generate tabla music/out.pdf
9.9 kB
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/out.pdf
9.8 kB
48.18 - Auto Encoders/out.pdf
9.8 kB
54.3 - Char-RNN with abc-notation Char-RNN model/out.pdf
9.8 kB
34.9 - Retraining models periodically/out.pdf
9.7 kB
48.3 - Rectified Linear Units (ReLU)/out.pdf
9.7 kB
57.20 - Sub QueriesNested QueriesInner Queries/out.pdf
9.7 kB
28.7 - Polynomial Kernel/out.pdf
9.7 kB
57.27 - Learning resources/out.pdf
9.7 kB
38.8 - Clustering as MF/out.pdf
9.7 kB
50.10 - Data Augmentation/out.pdf
9.5 kB
34.8 - Productionizing models/out.pdf
9.5 kB
48.5 - Batch Normalization/out.pdf
9.5 kB
34.7 - Modeling in the presence of outliers RANSAC/out.pdf
9.5 kB
25.3 - Real world Cases/out.pdf
9.5 kB
34.3 - Calibration Plots/out.pdf
9.4 kB
23.4 - Exercise problems on Bayes Theorem/out.pdf
9.4 kB
34.5 - Isotonic Regression/out.pdf
9.4 kB
34.12 - VC dimension/out.pdf
9.4 kB
15.5 - How to apply t-SNE and interpret its output/out.pdf
9.4 kB
49.3 - Google Colaboratory/out.pdf
9.3 kB
20.19 - Intuitive understanding of bias-variance/out.pdf
9.3 kB
34.4 - Platt’s CalibrationScaling/out.pdf
9.2 kB
58.1 - AD-Click Predicition/out_files/css(1)
9.2 kB
41.1 - BusinessReal world problem Problem definition/out.pdf
8.9 kB
41.10 - EDA Feature analysis/out.pdf
8.9 kB
41.11 - EDA Data Visualization T-SNE/out.pdf
8.9 kB
41.12 - EDA TF-IDF weighted Word2Vec featurization/out.pdf
8.9 kB
41.13 - ML Models Loading Data/out.pdf
8.9 kB
41.14 - ML Models Random Model/out.pdf
8.9 kB
41.15 - ML Models Logistic Regression and Linear SVM/out.pdf
8.9 kB
41.16 - ML Models XGBoost/out.pdf
8.9 kB
41.2 - Business objectives and constraints/out.pdf
8.9 kB
41.3 - Mapping to an ML problem Data overview/out.pdf
8.9 kB
41.4 - Mapping to an ML problem ML problem and performance metric/out.pdf
8.9 kB
41.5 - Mapping to an ML problem Train-test split/out.pdf
8.9 kB
41.6 - EDA Basic Statistics/out.pdf
8.9 kB
41.7 - EDA Basic Feature Extraction/out.pdf
8.9 kB
41.8 - EDA Text Preprocessing/out.pdf
8.9 kB
54.8 - Char-RNN with abc-notation Music generation/out.pdf
8.9 kB
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/out.pdf
8.9 kB
53.3 - Data understanding & Analysis Files and folders/out.pdf
8.9 kB
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/out.pdf
8.9 kB
48.7 - OptimizersHill descent in 3D and contours/out.pdf
8.9 kB
56.6 - EDABasic Stats/out.pdf
8.8 kB
24.18 - Extensions to Generalized linear models/out.pdf
8.8 kB
38.1 - Problem formulation Movie reviews/out.pdf
8.7 kB
55.1 - Human Activity Recognition Problem definition/out.pdf
8.7 kB
44.17 - Google drive with intermediate files/out.pdf
8.6 kB
46.1 - BusinessReal world problem Overview/out.pdf
8.6 kB
46.14 - Data PreparationClusteringSegmentation/out.pdf
8.6 kB
46.2 - Objectives and Constraints/out.pdf
8.6 kB
46.10 - Data Cleaning Speed/out.pdf
8.6 kB
46.11 - Data Cleaning Distance/out.pdf
8.6 kB
46.12 - Data Cleaning Fare/out.pdf
8.6 kB
46.13 - Data Cleaning Remove all outlierserroneous points/out.pdf
8.6 kB
46.15 - Data PreparationTime binning/out.pdf
8.6 kB
46.16 - Data PreparationSmoothing time-series data/out.pdf
8.6 kB
46.19 - Ratios and previous-time-bin values/out.pdf
8.6 kB
46.20 - Simple moving average/out.pdf
8.6 kB
46.21 - Weighted Moving average/out.pdf
8.6 kB
46.22 - Exponential weighted moving average/out.pdf
8.6 kB
46.24 - Regression models Train-Test split & Features/out.pdf
8.6 kB
46.25 - Linear regression/out.pdf
8.6 kB
46.26 - Random Forest regression/out.pdf
8.6 kB
46.27 - Xgboost Regression/out.pdf
8.6 kB
46.28 - Model comparison/out.pdf
8.6 kB
46.5 - Mapping to ML problem FieldsFeatures/out.pdf
8.6 kB
46.6 - Mapping to ML problem Time series forecastingRegression/out.pdf
8.6 kB
46.7 - Mapping to ML problem Performance metrics/out.pdf
8.6 kB
46.8 - Data Cleaning Latitude and Longitude data/out.pdf
8.6 kB
46.9 - Data Cleaning Trip Duration/out.pdf
8.6 kB
49.6 - Softmax Classifier on MNIST dataset/out.pdf
8.6 kB
46.4 - Mapping to ML problem dask dataframes/out.pdf
8.6 kB
40.1 - BusinessReal world problem/out.pdf
8.6 kB
40.10 - Data Modeling Multi label Classification/out.pdf
8.6 kB
40.11 - Data preparation/out.pdf
8.6 kB
40.12 - Train-Test Split/out.pdf
8.6 kB
40.13 - Featurization/out.pdf
8.6 kB
40.14 - Logistic regression One VS Rest/out.pdf
8.6 kB
40.15 - Sampling data and tags+Weighted models/out.pdf
8.6 kB
40.16 - Logistic regression revisited/out.pdf
8.6 kB
40.17 - Why not use advanced techniques/out.pdf
8.6 kB
40.2 - Business objectives and constraints/out.pdf
8.6 kB
40.3 - Mapping to an ML problem Data overview/out.pdf
8.6 kB
40.4 - Mapping to an ML problemML problem formulation/out.pdf
8.6 kB
40.5 - Mapping to an ML problemPerformance metrics/out.pdf
8.6 kB
40.6 - Hamming loss/out.pdf
8.6 kB
40.7 - EDAData Loading/out.pdf
8.6 kB
40.8 - EDAAnalysis of tags/out.pdf
8.6 kB
40.9 - EDAData Preprocessing/out.pdf
8.6 kB
44.1 - BusinessReal world problemProblem definition/out.pdf
8.6 kB
44.10 - Exploratory Data AnalysisCold start problem/out.pdf
8.6 kB
44.11 - Computing Similarity matricesUser-User similarity matrix/out.pdf
8.6 kB
44.12 - Computing Similarity matricesMovie-Movie similarity/out.pdf
8.6 kB
44.13 - Computing Similarity matricesDoes movie-movie similarity work/out.pdf
8.6 kB
44.15 - Overview of the modelling strategy/out.pdf
8.6 kB
44.18 - Featurizations for regression/out.pdf
8.6 kB
44.19 - Data transformation for Surprise/out.pdf
8.6 kB
44.2 - Objectives and constraints/out.pdf
8.6 kB
44.20 - Xgboost with 13 features/out.pdf
8.6 kB
44.22 - Xgboost + 13 features +Surprise baseline model/out.pdf
8.6 kB
44.23 - Surprise KNN predictors/out.pdf
8.6 kB
44.24 - Matrix Factorization models using Surprise/out.pdf
8.6 kB
44.25 - SVD ++ with implicit feedback/out.pdf
8.6 kB
44.26 - Final models with all features and predictors/out.pdf
8.6 kB
44.27 - Comparison between various models/out.pdf
8.6 kB
44.3 - Mapping to an ML problemData overview/out.pdf
8.6 kB
44.4 - Mapping to an ML problemML problem formulation/out.pdf
8.6 kB
44.5 - Exploratory Data AnalysisData preprocessing/out.pdf
8.6 kB
44.6 - Exploratory Data AnalysisTemporal Train-Test split/out.pdf
8.6 kB
44.7 - Exploratory Data AnalysisPreliminary data analysis/out.pdf
8.6 kB
44.9 - Exploratory Data AnalysisAverage ratings for various slices/out.pdf
8.6 kB
44.16 - Data Sampling/out.pdf
8.6 kB
49.12 - MNIST classification in Keras/out.pdf
8.6 kB
49.13 - Hyperparameter tuning in Keras/out.pdf
8.6 kB
49.7 - MLP Initialization/out.pdf
8.6 kB
45.1 - BusinessReal world problem Overview/out.pdf
8.6 kB
45.11 - Univariate AnalysisText feature/out.pdf
8.6 kB
45.12 - Machine Learning ModelsData preparation/out.pdf
8.6 kB
45.13 - Baseline Model Naive Bayes/out.pdf
8.6 kB
45.15 - Logistic Regression with class balancing/out.pdf
8.6 kB
45.16 - Logistic Regression without class balancing/out.pdf
8.6 kB
45.17 - Linear-SVM/out.pdf
8.6 kB
45.18 - Random-Forest with one-hot encoded features/out.pdf
8.6 kB
45.19 - Random-Forest with response-coded features/out.pdf
8.6 kB
45.2 - Business objectives and constraints/out.pdf
8.6 kB
45.20 - Stacking Classifier/out.pdf
8.6 kB
45.21 - Majority Voting classifier/out.pdf
8.6 kB
45.22 - Assignments/out.pdf
8.6 kB
45.3 - ML problem formulation Data/out.pdf
8.6 kB
45.4 - ML problem formulation Mapping real world to ML problem/out.pdf
8.6 kB
45.5 - ML problem formulation Train, CV and Test data construction/out.pdf
8.6 kB
45.6 - Exploratory Data AnalysisReading data & preprocessing/out.pdf
8.6 kB
45.7 - Exploratory Data AnalysisDistribution of Class-labels/out.pdf
8.6 kB
45.8 - Exploratory Data Analysis “Random” Model/out.pdf
8.6 kB
45.9 - Univariate AnalysisGene feature/out.pdf
8.6 kB
46.3 - Mapping to ML problem Data/out.pdf
8.6 kB
43.1 - Businessreal world problem Problem definition/out.pdf
8.6 kB
43.10 - ML models – using byte files only Random Model/out.pdf
8.6 kB
43.11 - k-NN/out.pdf
8.6 kB
43.12 - Logistic regression/out.pdf
8.6 kB
43.13 - Random Forest and Xgboost/out.pdf
8.6 kB
43.15 - File-size feature/out.pdf
8.6 kB
43.16 - Univariate analysis/out.pdf
8.6 kB
43.17 - t-SNE analysis/out.pdf
8.6 kB
43.18 - ML models on ASM file features/out.pdf
8.6 kB
43.19 - Models on all features t-SNE/out.pdf
8.6 kB
43.2 - Businessreal world problem Objectives and constraints/out.pdf
8.6 kB
43.20 - Models on all features RandomForest and Xgboost/out.pdf
8.6 kB
43.3 - Machine Learning problem mapping Data overview/out.pdf
8.6 kB
43.4 - Machine Learning problem mapping ML problem/out.pdf
8.6 kB
43.5 - Machine Learning problem mapping Train and test splitting/out.pdf
8.6 kB
43.6 - Exploratory Data Analysis Class distribution/out.pdf
8.6 kB
43.7 - Exploratory Data Analysis Feature extraction from byte files/out.pdf
8.6 kB
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/out.pdf
8.6 kB
43.9 - Exploratory Data Analysis Train-Test class distribution/out.pdf
8.6 kB
53.13 - Extensions/out.pdf
8.6 kB
49.4 - Install TensorFlow/out.pdf
8.5 kB
53.11 - Train the model/out.pdf
8.5 kB
47.14 - Decision surfaces Playground/out.pdf
8.5 kB
53.12 - Test and visualize the output/out.pdf
8.3 kB
24.5 - L2 Regularization Overfitting and Underfitting/out.pdf
6.9 kB
58.1 - AD-Click Predicition/out_files/smooth_scroll.min.js.pagespeed.jm.F46b1fzWC9.js.download
6.7 kB
58.1 - AD-Click Predicition/out_files/wp-content,_plugins,_livemesh-siteorigin-widgets.download
6.5 kB
58.1 - AD-Click Predicition/out_files/191x70xai-logo2.png.pagespeed.ic.tQcj-DGwlZ.webp
5.4 kB
58.1 - AD-Click Predicition/out_files/A.jquery.scrollbar.css.pagespeed.cf.cKaYxTj1_t.css
5.0 kB
58.1 - AD-Click Predicition/out_files/css(2)
4.9 kB
58.1 - AD-Click Predicition/out_files/xai-logo-ver1.png.pagespeed.ic.0rMXiYwP6X.webp
4.9 kB
58.1 - AD-Click Predicition/out_files/ec.js.download
2.8 kB
58.1 - AD-Click Predicition/out_files/A.flaticon.css.pagespeed.cf.t5uny6oKrs.css
2.8 kB
58.1 - AD-Click Predicition/out_files/f(1).txt
1.8 kB
1.1 - How to Learn from Appliedaicourse/[FTU Forum].url
1.4 kB
1.2 - How the Job Guarantee program works/[FTU Forum].url
1.4 kB
10.1 - Why learn it/[FTU Forum].url
1.4 kB
10.10 - Hyper Cube,Hyper Cuboid/[FTU Forum].url
1.4 kB
10.11 - Revision Questions/[FTU Forum].url
1.4 kB
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/[FTU Forum].url
1.4 kB
10.3 - Dot Product and Angle between 2 Vectors/[FTU Forum].url
1.4 kB
10.4 - Projection and Unit Vector/[FTU Forum].url
1.4 kB
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/[FTU Forum].url
1.4 kB
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/[FTU Forum].url
1.4 kB
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/[FTU Forum].url
1.4 kB
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/[FTU Forum].url
1.4 kB
10.9 - Square ,Rectangle/[FTU Forum].url
1.4 kB
11.1 - Introduction to Probability and Statistics/[FTU Forum].url
1.4 kB
11.10 - How distributions are used/[FTU Forum].url
1.4 kB
11.11 - Chebyshev’s inequality/[FTU Forum].url
1.4 kB
11.12 - Discrete and Continuous Uniform distributions/[FTU Forum].url
1.4 kB
11.13 - How to randomly sample data points (Uniform Distribution)/[FTU Forum].url
1.4 kB
11.14 - Bernoulli and Binomial Distribution/[FTU Forum].url
1.4 kB
11.15 - Log Normal Distribution/[FTU Forum].url
1.4 kB
11.16 - Power law distribution/[FTU Forum].url
1.4 kB
11.17 - Box cox transform/[FTU Forum].url
1.4 kB
11.18 - Applications of non-gaussian distributions/[FTU Forum].url
1.4 kB
11.19 - Co-variance/[FTU Forum].url
1.4 kB
11.2 - Population and Sample/[FTU Forum].url
1.4 kB
11.20 - Pearson Correlation Coefficient/[FTU Forum].url
1.4 kB
11.21 - Spearman Rank Correlation Coefficient/[FTU Forum].url
1.4 kB
11.22 - Correlation vs Causation/[FTU Forum].url
1.4 kB
11.23 - How to use correlations/[FTU Forum].url
1.4 kB
11.24 - Confidence interval (C.I) Introduction/[FTU Forum].url
1.4 kB
11.25 - Computing confidence interval given the underlying distribution/[FTU Forum].url
1.4 kB
11.26 - C.I for mean of a normal random variable/[FTU Forum].url
1.4 kB
11.27 - Confidence interval using bootstrapping/[FTU Forum].url
1.4 kB
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/[FTU Forum].url
1.4 kB
11.29 - Hypothesis Testing Intution with coin toss example/[FTU Forum].url
1.4 kB
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/[FTU Forum].url
1.4 kB
11.30 - Resampling and permutation test/[FTU Forum].url
1.4 kB
11.31 - K-S Test for similarity of two distributions/[FTU Forum].url
1.4 kB
11.32 - Code Snippet K-S Test/[FTU Forum].url
1.4 kB
11.33 - Hypothesis testing another example/[FTU Forum].url
1.4 kB
11.34 - Resampling and Permutation test another example/[FTU Forum].url
1.4 kB
11.35 - How to use hypothesis testing/[FTU Forum].url
1.4 kB
11.36 - Proportional Sampling/[FTU Forum].url
1.4 kB
11.37 - Revision Questions/[FTU Forum].url
1.4 kB
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/[FTU Forum].url
1.4 kB
11.5 - Symmetric distribution, Skewness and Kurtosis/[FTU Forum].url
1.4 kB
11.6 - Standard normal variate (Z) and standardization/[FTU Forum].url
1.4 kB
11.7 - Kernel density estimation/[FTU Forum].url
1.4 kB
11.8 - Sampling distribution & Central Limit theorem/[FTU Forum].url
1.4 kB
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/[FTU Forum].url
1.4 kB
12.1 - Questions & Answers/[FTU Forum].url
1.4 kB
13.1 - What is Dimensionality reduction/[FTU Forum].url
1.4 kB
13.10 - Code to Load MNIST Data Set/[FTU Forum].url
1.4 kB
13.2 - Row Vector and Column Vector/[FTU Forum].url
1.4 kB
13.3 - How to represent a data set/[FTU Forum].url
1.4 kB
13.4 - How to represent a dataset as a Matrix/[FTU Forum].url
1.4 kB
13.5 - Data Preprocessing Feature Normalisation/[FTU Forum].url
1.4 kB
13.6 - Mean of a data matrix/[FTU Forum].url
1.4 kB
13.7 - Data Preprocessing Column Standardization/[FTU Forum].url
1.4 kB
13.8 - Co-variance of a Data Matrix/[FTU Forum].url
1.4 kB
13.9 - MNIST dataset (784 dimensional)/[FTU Forum].url
1.4 kB
14.1 - Why learn PCA/[FTU Forum].url
1.4 kB
14.10 - PCA for dimensionality reduction (not-visualization)/[FTU Forum].url
1.4 kB
14.2 - Geometric intuition of PCA/[FTU Forum].url
1.4 kB
14.3 - Mathematical objective function of PCA/[FTU Forum].url
1.4 kB
14.4 - Alternative formulation of PCA Distance minimization/[FTU Forum].url
1.4 kB
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/[FTU Forum].url
1.4 kB
14.6 - PCA for Dimensionality Reduction and Visualization/[FTU Forum].url
1.4 kB
14.7 - Visualize MNIST dataset/[FTU Forum].url
1.4 kB
14.8 - Limitations of PCA/[FTU Forum].url
1.4 kB
14.9 - PCA Code example/[FTU Forum].url
1.4 kB
15.1 - What is t-SNE/[FTU Forum].url
1.4 kB
15.2 - Neighborhood of a point, Embedding/[FTU Forum].url
1.4 kB
15.3 - Geometric intuition of t-SNE/[FTU Forum].url
1.4 kB
15.4 - Crowding Problem/[FTU Forum].url
1.4 kB
15.5 - How to apply t-SNE and interpret its output/[FTU Forum].url
1.4 kB
15.6 - t-SNE on MNIST/[FTU Forum].url
1.4 kB
15.7 - Code example of t-SNE/[FTU Forum].url
1.4 kB
15.8 - Revision Questions/[FTU Forum].url
1.4 kB
16.1 - Questions & Answers/[FTU Forum].url
1.4 kB
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/[FTU Forum].url
1.4 kB
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/[FTU Forum].url
1.4 kB
17.11 - Bag of Words( Code Sample)/[FTU Forum].url
1.4 kB
17.12 - Text Preprocessing( Code Sample)/[FTU Forum].url
1.4 kB
17.13 - Bi-Grams and n-grams (Code Sample)/[FTU Forum].url
1.4 kB
17.14 - TF-IDF (Code Sample)/[FTU Forum].url
1.4 kB
17.15 - Word2Vec (Code Sample)/[FTU Forum].url
1.4 kB
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/[FTU Forum].url
1.4 kB
17.17 - Assignment-2 Apply t-SNE/[FTU Forum].url
1.4 kB
17.2 - Data Cleaning Deduplication/[FTU Forum].url
1.4 kB
17.3 - Why convert text to a vector/[FTU Forum].url
1.4 kB
17.4 - Bag of Words (BoW)/[FTU Forum].url
1.4 kB
17.5 - Text Preprocessing Stemming/[FTU Forum].url
1.4 kB
17.6 - uni-gram, bi-gram, n-grams/[FTU Forum].url
1.4 kB
17.7 - tf-idf (term frequency- inverse document frequency)/[FTU Forum].url
1.4 kB
17.8 - Why use log in IDF/[FTU Forum].url
1.4 kB
17.9 - Word2Vec/[FTU Forum].url
1.4 kB
18.1 - How “Classification” works/[FTU Forum].url
1.4 kB
18.10 - KNN Limitations/[FTU Forum].url
1.4 kB
18.11 - Decision surface for K-NN as K changes/[FTU Forum].url
1.4 kB
18.12 - Overfitting and Underfitting/[FTU Forum].url
1.4 kB
18.13 - Need for Cross validation/[FTU Forum].url
1.4 kB
18.14 - K-fold cross validation/[FTU Forum].url
1.4 kB
18.15 - Visualizing train, validation and test datasets/[FTU Forum].url
1.4 kB
18.16 - How to determine overfitting and underfitting/[FTU Forum].url
1.4 kB
18.17 - Time based splitting/[FTU Forum].url
1.4 kB
18.18 - k-NN for regression/[FTU Forum].url
1.4 kB
18.19 - Weighted k-NN/[FTU Forum].url
1.4 kB
18.2 - Data matrix notation/[FTU Forum].url
1.4 kB
18.20 - Voronoi diagram/[FTU Forum].url
1.4 kB
18.21 - Binary search tree/[FTU Forum].url
1.4 kB
18.22 - How to build a kd-tree/[FTU Forum].url
1.4 kB
18.23 - Find nearest neighbours using kd-tree/[FTU Forum].url
1.4 kB
18.24 - Limitations of Kd tree/[FTU Forum].url
1.4 kB
18.25 - Extensions/[FTU Forum].url
1.4 kB
18.26 - Hashing vs LSH/[FTU Forum].url
1.4 kB
18.27 - LSH for cosine similarity/[FTU Forum].url
1.4 kB
18.28 - LSH for euclidean distance/[FTU Forum].url
1.4 kB
18.29 - Probabilistic class label/[FTU Forum].url
1.4 kB
18.3 - Classification vs Regression (examples)/[FTU Forum].url
1.4 kB
18.30 - Code SampleDecision boundary/[FTU Forum].url
1.4 kB
18.31 - Code SampleCross Validation/[FTU Forum].url
1.4 kB
18.32 - Revision Questions/[FTU Forum].url
1.4 kB
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/[FTU Forum].url
1.4 kB
18.5 - Failure cases of KNN/[FTU Forum].url
1.4 kB
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/[FTU Forum].url
1.4 kB
18.7 - Cosine Distance & Cosine Similarity/[FTU Forum].url
1.4 kB
18.8 - How to measure the effectiveness of k-NN/[FTU Forum].url
1.4 kB
18.9 - TestEvaluation time and space complexity/[FTU Forum].url
1.4 kB
19.1 - Questions & Answers/[FTU Forum].url
1.4 kB
2.1 - Python, Anaconda and relevant packages installations/[FTU Forum].url
1.4 kB
2.10 - Control flow for loop/[FTU Forum].url
1.4 kB
2.11 - Control flow break and continue/[FTU Forum].url
1.4 kB
2.2 - Why learn Python/[FTU Forum].url
1.4 kB
2.3 - Keywords and identifiers/[FTU Forum].url
1.4 kB
2.4 - comments, indentation and statements/[FTU Forum].url
1.4 kB
2.5 - Variables and data types in Python/[FTU Forum].url
1.4 kB
2.6 - Standard Input and Output/[FTU Forum].url
1.4 kB
2.7 - Operators/[FTU Forum].url
1.4 kB
2.8 - Control flow if else/[FTU Forum].url
1.4 kB
2.9 - Control flow while loop/[FTU Forum].url
1.4 kB
20.1 - Introduction/[FTU Forum].url
1.4 kB
20.10 - Local reachability-density(A)/[FTU Forum].url
1.4 kB
20.11 - Local outlier Factor(A)/[FTU Forum].url
1.4 kB
20.12 - Impact of Scale & Column standardization/[FTU Forum].url
1.4 kB
20.13 - Interpretability/[FTU Forum].url
1.4 kB
20.14 - Feature Importance and Forward Feature selection/[FTU Forum].url
1.4 kB
20.15 - Handling categorical and numerical features/[FTU Forum].url
1.4 kB
20.16 - Handling missing values by imputation/[FTU Forum].url
1.4 kB
20.17 - curse of dimensionality/[FTU Forum].url
1.4 kB
20.18 - Bias-Variance tradeoff/[FTU Forum].url
1.4 kB
20.19 - Intuitive understanding of bias-variance/[FTU Forum].url
1.4 kB
20.2 - Imbalanced vs balanced dataset/[FTU Forum].url
1.4 kB
20.20 - Revision Questions/[FTU Forum].url
1.4 kB
20.21 - best and wrost case of algorithm/[FTU Forum].url
1.4 kB
20.3 - Multi-class classification/[FTU Forum].url
1.4 kB
20.4 - k-NN, given a distance or similarity matrix/[FTU Forum].url
1.4 kB
20.5 - Train and test set differences/[FTU Forum].url
1.4 kB
20.6 - Impact of outliers/[FTU Forum].url
1.4 kB
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/[FTU Forum].url
1.4 kB
20.8 - k distance/[FTU Forum].url
1.4 kB
20.9 - Reachability-Distance(A,B)/[FTU Forum].url
1.4 kB
21.1 - Accuracy/[FTU Forum].url
1.4 kB
21.10 - Revision Questions/[FTU Forum].url
1.4 kB
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/[FTU Forum].url
1.4 kB
21.3 - Precision and recall, F1-score/[FTU Forum].url
1.4 kB
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/[FTU Forum].url
1.4 kB
21.5 - Log-loss/[FTU Forum].url
1.4 kB
21.6 - R-SquaredCoefficient of determination/[FTU Forum].url
1.4 kB
21.7 - Median absolute deviation (MAD)/[FTU Forum].url
1.4 kB
21.8 - Distribution of errors/[FTU Forum].url
1.4 kB
21.9 - Assignment-3 Apply k-Nearest Neighbor/[FTU Forum].url
1.4 kB
22.1 - Questions & Answers/[FTU Forum].url
1.4 kB
23.1 - Conditional probability/[FTU Forum].url
1.4 kB
23.10 - Bias and Variance tradeoff/[FTU Forum].url
1.4 kB
23.11 - Feature importance and interpretability/[FTU Forum].url
1.4 kB
23.12 - Imbalanced data/[FTU Forum].url
1.4 kB
23.13 - Outliers/[FTU Forum].url
1.4 kB
23.14 - Missing values/[FTU Forum].url
1.4 kB
23.15 - Handling Numerical features (Gaussian NB)/[FTU Forum].url
1.4 kB
23.16 - Multiclass classification/[FTU Forum].url
1.4 kB
23.17 - Similarity or Distance matrix/[FTU Forum].url
1.4 kB
23.18 - Large dimensionality/[FTU Forum].url
1.4 kB
23.19 - Best and worst cases/[FTU Forum].url
1.4 kB
23.2 - Independent vs Mutually exclusive events/[FTU Forum].url
1.4 kB
23.20 - Code example/[FTU Forum].url
1.4 kB
23.21 - Assignment-4 Apply Naive Bayes/[FTU Forum].url
1.4 kB
23.22 - Revision Questions/[FTU Forum].url
1.4 kB
23.3 - Bayes Theorem with examples/[FTU Forum].url
1.4 kB
23.4 - Exercise problems on Bayes Theorem/[FTU Forum].url
1.4 kB
23.5 - Naive Bayes algorithm/[FTU Forum].url
1.4 kB
23.6 - Toy example Train and test stages/[FTU Forum].url
1.4 kB
23.7 - Naive Bayes on Text data/[FTU Forum].url
1.4 kB
23.8 - LaplaceAdditive Smoothing/[FTU Forum].url
1.4 kB
23.9 - Log-probabilities for numerical stability/[FTU Forum].url
1.4 kB
24.1 - Geometric intuition of Logistic Regression/[FTU Forum].url
1.4 kB
24.10 - Column Standardization/[FTU Forum].url
1.4 kB
24.11 - Feature importance and Model interpretability/[FTU Forum].url
1.4 kB
24.12 - Collinearity of features/[FTU Forum].url
1.4 kB
24.13 - TestRun time space and time complexity/[FTU Forum].url
1.4 kB
24.14 - Real world cases/[FTU Forum].url
1.4 kB
24.15 - Non-linearly separable data & feature engineering/[FTU Forum].url
1.4 kB
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/[FTU Forum].url
1.4 kB
24.17 - Assignment-5 Apply Logistic Regression/[FTU Forum].url
1.4 kB
24.18 - Extensions to Generalized linear models/[FTU Forum].url
1.4 kB
24.2 - Sigmoid function Squashing/[FTU Forum].url
1.4 kB
24.3 - Mathematical formulation of Objective function/[FTU Forum].url
1.4 kB
24.4 - Weight vector/[FTU Forum].url
1.4 kB
24.5 - L2 Regularization Overfitting and Underfitting/[FTU Forum].url
1.4 kB
24.6 - L1 regularization and sparsity/[FTU Forum].url
1.4 kB
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/[FTU Forum].url
1.4 kB
24.8 - Loss minimization interpretation/[FTU Forum].url
1.4 kB
24.9 - hyperparameters and random search/[FTU Forum].url
1.4 kB
25.1 - Geometric intuition of Linear Regression/[FTU Forum].url
1.4 kB
25.2 - Mathematical formulation/[FTU Forum].url
1.4 kB
25.3 - Real world Cases/[FTU Forum].url
1.4 kB
25.4 - Code sample for Linear Regression/[FTU Forum].url
1.4 kB
26.1 - Differentiation/[FTU Forum].url
1.4 kB
26.10 - Logistic regression formulation revisited/[FTU Forum].url
1.4 kB
26.11 - Why L1 regularization creates sparsity/[FTU Forum].url
1.4 kB
26.12 - Assignment 6 Implement SGD for linear regression/[FTU Forum].url
1.4 kB
26.13 - Revision questions/[FTU Forum].url
1.4 kB
26.2 - Online differentiation tools/[FTU Forum].url
1.4 kB
26.3 - Maxima and Minima/[FTU Forum].url
1.4 kB
26.4 - Vector calculus Grad/[FTU Forum].url
1.4 kB
26.5 - Gradient descent geometric intuition/[FTU Forum].url
1.4 kB
26.6 - Learning rate/[FTU Forum].url
1.4 kB
26.7 - Gradient descent for linear regression/[FTU Forum].url
1.4 kB
26.8 - SGD algorithm/[FTU Forum].url
1.4 kB
26.9 - Constrained Optimization & PCA/[FTU Forum].url
1.4 kB
27.1 - Questions & Answers/[FTU Forum].url
1.4 kB
28.1 - Geometric Intution/[FTU Forum].url
1.4 kB
28.10 - Train and run time complexities/[FTU Forum].url
1.4 kB
28.11 - nu-SVM control errors and support vectors/[FTU Forum].url
1.4 kB
28.12 - SVM Regression/[FTU Forum].url
1.4 kB
28.13 - Cases/[FTU Forum].url
1.4 kB
28.14 - Code Sample/[FTU Forum].url
1.4 kB
28.15 - Assignment-7 Apply SVM/[FTU Forum].url
1.4 kB
28.16 - Revision Questions/[FTU Forum].url
1.4 kB
28.2 - Mathematical derivation/[FTU Forum].url
1.4 kB
28.3 - Why we take values +1 and and -1 for Support vector planes/[FTU Forum].url
1.4 kB
28.4 - Loss function (Hinge Loss) based interpretation/[FTU Forum].url
1.4 kB
28.5 - Dual form of SVM formulation/[FTU Forum].url
1.4 kB
28.6 - kernel trick/[FTU Forum].url
1.4 kB
28.7 - Polynomial Kernel/[FTU Forum].url
1.4 kB
28.8 - RBF-Kernel/[FTU Forum].url
1.4 kB
28.9 - Domain specific Kernels/[FTU Forum].url
1.4 kB
29.1 - Questions & Answers/[FTU Forum].url
1.4 kB
3.1 - Lists/[FTU Forum].url
1.4 kB
3.2 - Tuples part 1/[FTU Forum].url
1.4 kB
3.3 - Tuples part-2/[FTU Forum].url
1.4 kB
3.4 - Sets/[FTU Forum].url
1.4 kB
3.5 - Dictionary/[FTU Forum].url
1.4 kB
3.6 - Strings/[FTU Forum].url
1.4 kB
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/[FTU Forum].url
1.4 kB
30.10 - Overfitting and Underfitting/[FTU Forum].url
1.4 kB
30.11 - Train and Run time complexity/[FTU Forum].url
1.4 kB
30.12 - Regression using Decision Trees/[FTU Forum].url
1.4 kB
30.13 - Cases/[FTU Forum].url
1.4 kB
30.14 - Code Samples/[FTU Forum].url
1.4 kB
30.15 - Assignment-8 Apply Decision Trees/[FTU Forum].url
1.4 kB
30.16 - Revision Questions/[FTU Forum].url
1.4 kB
30.2 - Sample Decision tree/[FTU Forum].url
1.4 kB
30.3 - Building a decision TreeEntropy/[FTU Forum].url
1.4 kB
30.4 - Building a decision TreeInformation Gain/[FTU Forum].url
1.4 kB
30.5 - Building a decision Tree Gini Impurity/[FTU Forum].url
1.4 kB
30.6 - Building a decision Tree Constructing a DT/[FTU Forum].url
1.4 kB
30.7 - Building a decision Tree Splitting numerical features/[FTU Forum].url
1.4 kB
30.8 - Feature standardization/[FTU Forum].url
1.4 kB
30.9 - Building a decision TreeCategorical features with many possible values/[FTU Forum].url
1.4 kB
31.1 - Questions & Answers/[FTU Forum].url
1.4 kB
32.1 - What are ensembles/[FTU Forum].url
1.4 kB
32.10 - Residuals, Loss functions and gradients/[FTU Forum].url
1.4 kB
32.11 - Gradient Boosting/[FTU Forum].url
1.4 kB
32.12 - Regularization by Shrinkage/[FTU Forum].url
1.4 kB
32.13 - Train and Run time complexity/[FTU Forum].url
1.4 kB
32.14 - XGBoost Boosting + Randomization/[FTU Forum].url
1.4 kB
32.15 - AdaBoost geometric intuition/[FTU Forum].url
1.4 kB
32.16 - Stacking models/[FTU Forum].url
1.4 kB
32.17 - Cascading classifiers/[FTU Forum].url
1.4 kB
32.18 - Kaggle competitions vs Real world/[FTU Forum].url
1.4 kB
32.19 - Assignment-9 Apply Random Forests & GBDT/[FTU Forum].url
1.4 kB
32.2 - Bootstrapped Aggregation (Bagging) Intuition/[FTU Forum].url
1.4 kB
32.20 - Revision Questions/[FTU Forum].url
1.4 kB
32.3 - Random Forest and their construction/[FTU Forum].url
1.4 kB
32.4 - Bias-Variance tradeoff/[FTU Forum].url
1.4 kB
32.5 - Train and run time complexity/[FTU Forum].url
1.4 kB
32.6 - BaggingCode Sample/[FTU Forum].url
1.4 kB
32.7 - Extremely randomized trees/[FTU Forum].url
1.4 kB
32.8 - Random Tree Cases/[FTU Forum].url
1.4 kB
32.9 - Boosting Intuition/[FTU Forum].url
1.4 kB
33.1 - Introduction/[FTU Forum].url
1.4 kB
33.10 - Indicator variables/[FTU Forum].url
1.4 kB
33.11 - Feature binning/[FTU Forum].url
1.4 kB
33.12 - Interaction variables/[FTU Forum].url
1.4 kB
33.13 - Mathematical transforms/[FTU Forum].url
1.4 kB
33.14 - Model specific featurizations/[FTU Forum].url
1.4 kB
33.15 - Feature orthogonality/[FTU Forum].url
1.4 kB
33.16 - Domain specific featurizations/[FTU Forum].url
1.4 kB
33.17 - Feature slicing/[FTU Forum].url
1.4 kB
33.18 - Kaggle Winners solutions/[FTU Forum].url
1.4 kB
33.2 - Moving window for Time Series Data/[FTU Forum].url
1.4 kB
33.3 - Fourier decomposition/[FTU Forum].url
1.4 kB
33.4 - Deep learning features LSTM/[FTU Forum].url
1.4 kB
33.5 - Image histogram/[FTU Forum].url
1.4 kB
33.6 - Keypoints SIFT/[FTU Forum].url
1.4 kB
33.7 - Deep learning features CNN/[FTU Forum].url
1.4 kB
33.8 - Relational data/[FTU Forum].url
1.4 kB
33.9 - Graph data/[FTU Forum].url
1.4 kB
34.1 - Calibration of ModelsNeed for calibration/[FTU Forum].url
1.4 kB
34.10 - AB testing/[FTU Forum].url
1.4 kB
34.11 - Data Science Life cycle/[FTU Forum].url
1.4 kB
34.12 - VC dimension/[FTU Forum].url
1.4 kB
34.2 - Productionization and deployment of Machine Learning Models/[FTU Forum].url
1.4 kB
34.3 - Calibration Plots/[FTU Forum].url
1.4 kB
34.4 - Platt’s CalibrationScaling/[FTU Forum].url
1.4 kB
34.5 - Isotonic Regression/[FTU Forum].url
1.4 kB
34.6 - Code Samples/[FTU Forum].url
1.4 kB
34.7 - Modeling in the presence of outliers RANSAC/[FTU Forum].url
1.4 kB
34.8 - Productionizing models/[FTU Forum].url
1.4 kB
34.9 - Retraining models periodically/[FTU Forum].url
1.4 kB
35.1 - What is Clustering/[FTU Forum].url
1.4 kB
35.10 - K-Medoids/[FTU Forum].url
1.4 kB
35.11 - Determining the right K/[FTU Forum].url
1.4 kB
35.12 - Code Samples/[FTU Forum].url
1.4 kB
35.13 - Time and space complexity/[FTU Forum].url
1.4 kB
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FTU Forum].url
1.4 kB
35.2 - Unsupervised learning/[FTU Forum].url
1.4 kB
35.3 - Applications/[FTU Forum].url
1.4 kB
35.4 - Metrics for Clustering/[FTU Forum].url
1.4 kB
35.5 - K-Means Geometric intuition, Centroids/[FTU Forum].url
1.4 kB
35.6 - K-Means Mathematical formulation Objective function/[FTU Forum].url
1.4 kB
35.7 - K-Means Algorithm/[FTU Forum].url
1.4 kB
35.8 - How to initialize K-Means++/[FTU Forum].url
1.4 kB
35.9 - Failure casesLimitations/[FTU Forum].url
1.4 kB
36.1 - Agglomerative & Divisive, Dendrograms/[FTU Forum].url
1.4 kB
36.2 - Agglomerative Clustering/[FTU Forum].url
1.4 kB
36.3 - Proximity methods Advantages and Limitations/[FTU Forum].url
1.4 kB
36.4 - Time and Space Complexity/[FTU Forum].url
1.4 kB
36.5 - Limitations of Hierarchical Clustering/[FTU Forum].url
1.4 kB
36.6 - Code sample/[FTU Forum].url
1.4 kB
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FTU Forum].url
1.4 kB
37.1 - Density based clustering/[FTU Forum].url
1.4 kB
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FTU Forum].url
1.4 kB
37.11 - Revision Questions/[FTU Forum].url
1.4 kB
37.2 - MinPts and Eps Density/[FTU Forum].url
1.4 kB
37.3 - Core, Border and Noise points/[FTU Forum].url
1.4 kB
37.4 - Density edge and Density connected points/[FTU Forum].url
1.4 kB
37.5 - DBSCAN Algorithm/[FTU Forum].url
1.4 kB
37.6 - Hyper Parameters MinPts and Eps/[FTU Forum].url
1.4 kB
37.7 - Advantages and Limitations of DBSCAN/[FTU Forum].url
1.4 kB
37.8 - Time and Space Complexity/[FTU Forum].url
1.4 kB
37.9 - Code samples/[FTU Forum].url
1.4 kB
38.1 - Problem formulation Movie reviews/[FTU Forum].url
1.4 kB
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/[FTU Forum].url
1.4 kB
38.11 - Cold Start problem/[FTU Forum].url
1.4 kB
38.12 - Word vectors as MF/[FTU Forum].url
1.4 kB
38.13 - Eigen-Faces/[FTU Forum].url
1.4 kB
38.14 - Code example/[FTU Forum].url
1.4 kB
38.15 - Assignment-11 Apply Truncated SVD/[FTU Forum].url
1.4 kB
38.16 - Revision Questions/[FTU Forum].url
1.4 kB
38.2 - Content based vs Collaborative Filtering/[FTU Forum].url
1.4 kB
38.3 - Similarity based Algorithms/[FTU Forum].url
1.4 kB
38.4 - Matrix Factorization PCA, SVD/[FTU Forum].url
1.4 kB
38.5 - Matrix Factorization NMF/[FTU Forum].url
1.4 kB
38.6 - Matrix Factorization for Collaborative filtering/[FTU Forum].url
1.4 kB
38.7 - Matrix Factorization for feature engineering/[FTU Forum].url
1.4 kB
38.8 - Clustering as MF/[FTU Forum].url
1.4 kB
38.9 - Hyperparameter tuning/[FTU Forum].url
1.4 kB
39.1 - Questions & Answers/[FTU Forum].url
1.4 kB
4.1 - Introduction/[FTU Forum].url
1.4 kB
4.10 - Debugging Python/[FTU Forum].url
1.4 kB
4.2 - Types of functions/[FTU Forum].url
1.4 kB
4.3 - Function arguments/[FTU Forum].url
1.4 kB
4.4 - Recursive functions/[FTU Forum].url
1.4 kB
4.5 - Lambda functions/[FTU Forum].url
1.4 kB
4.6 - Modules/[FTU Forum].url
1.4 kB
4.7 - Packages/[FTU Forum].url
1.4 kB
4.8 - File Handling/[FTU Forum].url
1.4 kB
4.9 - Exception Handling/[FTU Forum].url
1.4 kB
40.1 - BusinessReal world problem/[FTU Forum].url
1.4 kB
40.10 - Data Modeling Multi label Classification/[FTU Forum].url
1.4 kB
40.11 - Data preparation/[FTU Forum].url
1.4 kB
40.12 - Train-Test Split/[FTU Forum].url
1.4 kB
40.13 - Featurization/[FTU Forum].url
1.4 kB
40.14 - Logistic regression One VS Rest/[FTU Forum].url
1.4 kB
40.15 - Sampling data and tags+Weighted models/[FTU Forum].url
1.4 kB
40.16 - Logistic regression revisited/[FTU Forum].url
1.4 kB
40.17 - Why not use advanced techniques/[FTU Forum].url
1.4 kB
40.18 - Assignments/[FTU Forum].url
1.4 kB
40.2 - Business objectives and constraints/[FTU Forum].url
1.4 kB
40.3 - Mapping to an ML problem Data overview/[FTU Forum].url
1.4 kB
40.4 - Mapping to an ML problemML problem formulation/[FTU Forum].url
1.4 kB
40.5 - Mapping to an ML problemPerformance metrics/[FTU Forum].url
1.4 kB
40.6 - Hamming loss/[FTU Forum].url
1.4 kB
40.7 - EDAData Loading/[FTU Forum].url
1.4 kB
40.8 - EDAAnalysis of tags/[FTU Forum].url
1.4 kB
40.9 - EDAData Preprocessing/[FTU Forum].url
1.4 kB
41.1 - BusinessReal world problem Problem definition/[FTU Forum].url
1.4 kB
41.10 - EDA Feature analysis/[FTU Forum].url
1.4 kB
41.11 - EDA Data Visualization T-SNE/[FTU Forum].url
1.4 kB
41.12 - EDA TF-IDF weighted Word2Vec featurization/[FTU Forum].url
1.4 kB
41.13 - ML Models Loading Data/[FTU Forum].url
1.4 kB
41.14 - ML Models Random Model/[FTU Forum].url
1.4 kB
41.15 - ML Models Logistic Regression and Linear SVM/[FTU Forum].url
1.4 kB
41.16 - ML Models XGBoost/[FTU Forum].url
1.4 kB
41.17 - Assignments/[FTU Forum].url
1.4 kB
41.2 - Business objectives and constraints/[FTU Forum].url
1.4 kB
41.3 - Mapping to an ML problem Data overview/[FTU Forum].url
1.4 kB
41.4 - Mapping to an ML problem ML problem and performance metric/[FTU Forum].url
1.4 kB
41.5 - Mapping to an ML problem Train-test split/[FTU Forum].url
1.4 kB
41.6 - EDA Basic Statistics/[FTU Forum].url
1.4 kB
41.7 - EDA Basic Feature Extraction/[FTU Forum].url
1.4 kB
41.8 - EDA Text Preprocessing/[FTU Forum].url
1.4 kB
41.9 - EDA Advanced Feature Extraction/[FTU Forum].url
1.4 kB
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/[FTU Forum].url
1.4 kB
42.10 - Text Pre-Processing Tokenization and Stop-word removal/[FTU Forum].url
1.4 kB
42.11 - Stemming/[FTU Forum].url
1.4 kB
42.12 - Text based product similarity Converting text to an n-D vector bag of words/[FTU Forum].url
1.4 kB
42.13 - Code for bag of words based product similarity/[FTU Forum].url
1.4 kB
42.14 - TF-IDF featurizing text based on word-importance/[FTU Forum].url
1.4 kB
42.15 - Code for TF-IDF based product similarity/[FTU Forum].url
1.4 kB
42.16 - Code for IDF based product similarity/[FTU Forum].url
1.4 kB
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/[FTU Forum].url
1.4 kB
42.18 - Code for Average Word2Vec product similarity/[FTU Forum].url
1.4 kB
42.19 - TF-IDF weighted Word2Vec/[FTU Forum].url
1.4 kB
42.2 - Plan of action/[FTU Forum].url
1.4 kB
42.20 - Code for IDF weighted Word2Vec product similarity/[FTU Forum].url
1.4 kB
42.21 - Weighted similarity using brand and color/[FTU Forum].url
1.4 kB
42.22 - Code for weighted similarity/[FTU Forum].url
1.4 kB
42.23 - Building a real world solution/[FTU Forum].url
1.4 kB
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/[FTU Forum].url
1.4 kB
42.25 - Using Keras + Tensorflow to extract features/[FTU Forum].url
1.4 kB
42.26 - Visual similarity based product similarity/[FTU Forum].url
1.4 kB
42.27 - Measuring goodness of our solution AB testing/[FTU Forum].url
1.4 kB
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/[FTU Forum].url
1.4 kB
42.3 - Amazon product advertising API/[FTU Forum].url
1.4 kB
42.4 - Data folders and paths/[FTU Forum].url
1.4 kB
42.5 - Overview of the data and Terminology/[FTU Forum].url
1.4 kB
42.6 - Data cleaning and understandingMissing data in various features/[FTU Forum].url
1.4 kB
42.7 - Understand duplicate rows/[FTU Forum].url
1.4 kB
42.8 - Remove duplicates Part 1/[FTU Forum].url
1.4 kB
42.9 - Remove duplicates Part 2/[FTU Forum].url
1.4 kB
43.1 - Businessreal world problem Problem definition/[FTU Forum].url
1.4 kB
43.10 - ML models – using byte files only Random Model/[FTU Forum].url
1.4 kB
43.11 - k-NN/[FTU Forum].url
1.4 kB
43.12 - Logistic regression/[FTU Forum].url
1.4 kB
43.13 - Random Forest and Xgboost/[FTU Forum].url
1.4 kB
43.14 - ASM Files Feature extraction & Multiprocessing/[FTU Forum].url
1.4 kB
43.15 - File-size feature/[FTU Forum].url
1.4 kB
43.16 - Univariate analysis/[FTU Forum].url
1.4 kB
43.17 - t-SNE analysis/[FTU Forum].url
1.4 kB
43.18 - ML models on ASM file features/[FTU Forum].url
1.4 kB
43.19 - Models on all features t-SNE/[FTU Forum].url
1.4 kB
43.2 - Businessreal world problem Objectives and constraints/[FTU Forum].url
1.4 kB
43.20 - Models on all features RandomForest and Xgboost/[FTU Forum].url
1.4 kB
43.21 - Assignments/[FTU Forum].url
1.4 kB
43.3 - Machine Learning problem mapping Data overview/[FTU Forum].url
1.4 kB
43.4 - Machine Learning problem mapping ML problem/[FTU Forum].url
1.4 kB
43.5 - Machine Learning problem mapping Train and test splitting/[FTU Forum].url
1.4 kB
43.6 - Exploratory Data Analysis Class distribution/[FTU Forum].url
1.4 kB
43.7 - Exploratory Data Analysis Feature extraction from byte files/[FTU Forum].url
1.4 kB
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/[FTU Forum].url
1.4 kB
43.9 - Exploratory Data Analysis Train-Test class distribution/[FTU Forum].url
1.4 kB
44.1 - BusinessReal world problemProblem definition/[FTU Forum].url
1.4 kB
44.10 - Exploratory Data AnalysisCold start problem/[FTU Forum].url
1.4 kB
44.11 - Computing Similarity matricesUser-User similarity matrix/[FTU Forum].url
1.4 kB
44.12 - Computing Similarity matricesMovie-Movie similarity/[FTU Forum].url
1.4 kB
44.13 - Computing Similarity matricesDoes movie-movie similarity work/[FTU Forum].url
1.4 kB
44.14 - ML ModelsSurprise library/[FTU Forum].url
1.4 kB
44.15 - Overview of the modelling strategy/[FTU Forum].url
1.4 kB
44.16 - Data Sampling/[FTU Forum].url
1.4 kB
44.17 - Google drive with intermediate files/[FTU Forum].url
1.4 kB
44.18 - Featurizations for regression/[FTU Forum].url
1.4 kB
44.19 - Data transformation for Surprise/[FTU Forum].url
1.4 kB
44.2 - Objectives and constraints/[FTU Forum].url
1.4 kB
44.20 - Xgboost with 13 features/[FTU Forum].url
1.4 kB
44.21 - Surprise Baseline model/[FTU Forum].url
1.4 kB
44.22 - Xgboost + 13 features +Surprise baseline model/[FTU Forum].url
1.4 kB
44.23 - Surprise KNN predictors/[FTU Forum].url
1.4 kB
44.24 - Matrix Factorization models using Surprise/[FTU Forum].url
1.4 kB
44.25 - SVD ++ with implicit feedback/[FTU Forum].url
1.4 kB
44.26 - Final models with all features and predictors/[FTU Forum].url
1.4 kB
44.27 - Comparison between various models/[FTU Forum].url
1.4 kB
44.28 - Assignments/[FTU Forum].url
1.4 kB
44.3 - Mapping to an ML problemData overview/[FTU Forum].url
1.4 kB
44.4 - Mapping to an ML problemML problem formulation/[FTU Forum].url
1.4 kB
44.5 - Exploratory Data AnalysisData preprocessing/[FTU Forum].url
1.4 kB
44.6 - Exploratory Data AnalysisTemporal Train-Test split/[FTU Forum].url
1.4 kB
44.7 - Exploratory Data AnalysisPreliminary data analysis/[FTU Forum].url
1.4 kB
44.8 - Exploratory Data AnalysisSparse matrix representation/[FTU Forum].url
1.4 kB
44.9 - Exploratory Data AnalysisAverage ratings for various slices/[FTU Forum].url
1.4 kB
45.1 - BusinessReal world problem Overview/[FTU Forum].url
1.4 kB
45.10 - Univariate AnalysisVariation Feature/[FTU Forum].url
1.4 kB
45.11 - Univariate AnalysisText feature/[FTU Forum].url
1.4 kB
45.12 - Machine Learning ModelsData preparation/[FTU Forum].url
1.4 kB
45.13 - Baseline Model Naive Bayes/[FTU Forum].url
1.4 kB
45.14 - K-Nearest Neighbors Classification/[FTU Forum].url
1.4 kB
45.15 - Logistic Regression with class balancing/[FTU Forum].url
1.4 kB
45.16 - Logistic Regression without class balancing/[FTU Forum].url
1.4 kB
45.17 - Linear-SVM/[FTU Forum].url
1.4 kB
45.18 - Random-Forest with one-hot encoded features/[FTU Forum].url
1.4 kB
45.19 - Random-Forest with response-coded features/[FTU Forum].url
1.4 kB
45.2 - Business objectives and constraints/[FTU Forum].url
1.4 kB
45.20 - Stacking Classifier/[FTU Forum].url
1.4 kB
45.21 - Majority Voting classifier/[FTU Forum].url
1.4 kB
45.22 - Assignments/[FTU Forum].url
1.4 kB
45.3 - ML problem formulation Data/[FTU Forum].url
1.4 kB
45.4 - ML problem formulation Mapping real world to ML problem/[FTU Forum].url
1.4 kB
45.4 - ML problem formulation Mapping real world to ML problem#/[FTU Forum].url
1.4 kB
45.5 - ML problem formulation Train, CV and Test data construction/[FTU Forum].url
1.4 kB
45.6 - Exploratory Data AnalysisReading data & preprocessing/[FTU Forum].url
1.4 kB
45.7 - Exploratory Data AnalysisDistribution of Class-labels/[FTU Forum].url
1.4 kB
45.8 - Exploratory Data Analysis “Random” Model/[FTU Forum].url
1.4 kB
45.9 - Univariate AnalysisGene feature/[FTU Forum].url
1.4 kB
46.1 - BusinessReal world problem Overview/[FTU Forum].url
1.4 kB
46.10 - Data Cleaning Speed/[FTU Forum].url
1.4 kB
46.11 - Data Cleaning Distance/[FTU Forum].url
1.4 kB
46.12 - Data Cleaning Fare/[FTU Forum].url
1.4 kB
46.13 - Data Cleaning Remove all outlierserroneous points/[FTU Forum].url
1.4 kB
46.14 - Data PreparationClusteringSegmentation/[FTU Forum].url
1.4 kB
46.15 - Data PreparationTime binning/[FTU Forum].url
1.4 kB
46.16 - Data PreparationSmoothing time-series data/[FTU Forum].url
1.4 kB
46.17 - Data PreparationSmoothing time-series data cont/[FTU Forum].url
1.4 kB
46.18 - Data Preparation Time series and Fourier transforms/[FTU Forum].url
1.4 kB
46.19 - Ratios and previous-time-bin values/[FTU Forum].url
1.4 kB
46.2 - Objectives and Constraints/[FTU Forum].url
1.4 kB
46.20 - Simple moving average/[FTU Forum].url
1.4 kB
46.21 - Weighted Moving average/[FTU Forum].url
1.4 kB
46.22 - Exponential weighted moving average/[FTU Forum].url
1.4 kB
46.23 - Results/[FTU Forum].url
1.4 kB
46.24 - Regression models Train-Test split & Features/[FTU Forum].url
1.4 kB
46.25 - Linear regression/[FTU Forum].url
1.4 kB
46.26 - Random Forest regression/[FTU Forum].url
1.4 kB
46.27 - Xgboost Regression/[FTU Forum].url
1.4 kB
46.28 - Model comparison/[FTU Forum].url
1.4 kB
46.29 - Assignment/[FTU Forum].url
1.4 kB
46.3 - Mapping to ML problem Data/[FTU Forum].url
1.4 kB
46.4 - Mapping to ML problem dask dataframes/[FTU Forum].url
1.4 kB
46.5 - Mapping to ML problem FieldsFeatures/[FTU Forum].url
1.4 kB
46.6 - Mapping to ML problem Time series forecastingRegression/[FTU Forum].url
1.4 kB
46.7 - Mapping to ML problem Performance metrics/[FTU Forum].url
1.4 kB
46.8 - Data Cleaning Latitude and Longitude data/[FTU Forum].url
1.4 kB
46.9 - Data Cleaning Trip Duration/[FTU Forum].url
1.4 kB
47.1 - History of Neural networks and Deep Learning/[FTU Forum].url
1.4 kB
47.10 - Backpropagation/[FTU Forum].url
1.4 kB
47.11 - Activation functions/[FTU Forum].url
1.4 kB
47.12 - Vanishing Gradient problem/[FTU Forum].url
1.4 kB
47.13 - Bias-Variance tradeoff/[FTU Forum].url
1.4 kB
47.14 - Decision surfaces Playground/[FTU Forum].url
1.4 kB
47.2 - How Biological Neurons work/[FTU Forum].url
1.4 kB
47.3 - Growth of biological neural networks/[FTU Forum].url
1.4 kB
47.4 - Diagrammatic representation Logistic Regression and Perceptron/[FTU Forum].url
1.4 kB
47.5 - Multi-Layered Perceptron (MLP)/[FTU Forum].url
1.4 kB
47.6 - Notation/[FTU Forum].url
1.4 kB
47.7 - Training a single-neuron model/[FTU Forum].url
1.4 kB
47.8 - Training an MLP Chain Rule/[FTU Forum].url
1.4 kB
47.9 - Training an MLPMemoization/[FTU Forum].url
1.4 kB
48.1 - Deep Multi-layer perceptrons1980s to 2010s/[FTU Forum].url
1.4 kB
48.10 - Nesterov Accelerated Gradient (NAG)/[FTU Forum].url
1.4 kB
48.11 - OptimizersAdaGrad/[FTU Forum].url
1.4 kB
48.12 - Optimizers Adadelta andRMSProp/[FTU Forum].url
1.4 kB
48.13 - Adam/[FTU Forum].url
1.4 kB
48.14 - Which algorithm to choose when/[FTU Forum].url
1.4 kB
48.15 - Gradient Checking and clipping/[FTU Forum].url
1.4 kB
48.16 - Softmax and Cross-entropy for multi-class classification/[FTU Forum].url
1.4 kB
48.17 - How to train a Deep MLP/[FTU Forum].url
1.4 kB
48.18 - Auto Encoders/[FTU Forum].url
1.4 kB
48.19 - Word2Vec CBOW/[FTU Forum].url
1.4 kB
48.2 - Dropout layers & Regularization/[FTU Forum].url
1.4 kB
48.20 - Word2Vec Skip-gram/[FTU Forum].url
1.4 kB
48.21 - Word2Vec Algorithmic Optimizations/[FTU Forum].url
1.4 kB
48.3 - Rectified Linear Units (ReLU)/[FTU Forum].url
1.4 kB
48.4 - Weight initialization/[FTU Forum].url
1.4 kB
48.5 - Batch Normalization/[FTU Forum].url
1.4 kB
48.6 - OptimizersHill-descent analogy in 2D/[FTU Forum].url
1.4 kB
48.7 - OptimizersHill descent in 3D and contours/[FTU Forum].url
1.4 kB
48.8 - SGD Recap/[FTU Forum].url
1.4 kB
48.9 - Batch SGD with momentum/[FTU Forum].url
1.4 kB
49.1 - Tensorflow and Keras overview/[FTU Forum].url
1.4 kB
49.10 - Model 3 Batch Normalization/[FTU Forum].url
1.4 kB
49.11 - Model 4 Dropout/[FTU Forum].url
1.4 kB
49.12 - MNIST classification in Keras/[FTU Forum].url
1.4 kB
49.13 - Hyperparameter tuning in Keras/[FTU Forum].url
1.4 kB
49.14 - Exercise Try different MLP architectures on MNIST dataset/[FTU Forum].url
1.4 kB
49.2 - GPU vs CPU for Deep Learning/[FTU Forum].url
1.4 kB
49.3 - Google Colaboratory/[FTU Forum].url
1.4 kB
49.4 - Install TensorFlow/[FTU Forum].url
1.4 kB
49.5 - Online documentation and tutorials/[FTU Forum].url
1.4 kB
49.6 - Softmax Classifier on MNIST dataset/[FTU Forum].url
1.4 kB
49.7 - MLP Initialization/[FTU Forum].url
1.4 kB
49.8 - Model 1 Sigmoid activation/[FTU Forum].url
1.4 kB
49.9 - Model 2 ReLU activation/[FTU Forum].url
1.4 kB
5.1 - Numpy Introduction/[FTU Forum].url
1.4 kB
5.2 - Numerical operations on Numpy/[FTU Forum].url
1.4 kB
50.1 - Biological inspiration Visual Cortex/[FTU Forum].url
1.4 kB
50.10 - Data Augmentation/[FTU Forum].url
1.4 kB
50.11 - Convolution Layers in Keras/[FTU Forum].url
1.4 kB
50.12 - AlexNet/[FTU Forum].url
1.4 kB
50.13 - VGGNet/[FTU Forum].url
1.4 kB
50.14 - Residual Network/[FTU Forum].url
1.4 kB
50.15 - Inception Network/[FTU Forum].url
1.4 kB
50.16 - What is Transfer learning/[FTU Forum].url
1.4 kB
50.17 - Code example Cats vs Dogs/[FTU Forum].url
1.4 kB
50.18 - Code Example MNIST dataset/[FTU Forum].url
1.4 kB
50.19 - Assignment Try various CNN networks on MNIST dataset#/[FTU Forum].url
1.4 kB
50.2 - ConvolutionEdge Detection on images/[FTU Forum].url
1.4 kB
50.3 - ConvolutionPadding and strides/[FTU Forum].url
1.4 kB
50.4 - Convolution over RGB images/[FTU Forum].url
1.4 kB
50.5 - Convolutional layer/[FTU Forum].url
1.4 kB
50.6 - Max-pooling/[FTU Forum].url
1.4 kB
50.7 - CNN Training Optimization/[FTU Forum].url
1.4 kB
50.8 - Example CNN LeNet [1998]/[FTU Forum].url
1.4 kB
50.9 - ImageNet dataset/[FTU Forum].url
1.4 kB
51.1 - Why RNNs/[FTU Forum].url
1.4 kB
51.10 - Code example IMDB Sentiment classification/[FTU Forum].url
1.4 kB
51.11 - Exercise Amazon Fine Food reviews LSTM model/[FTU Forum].url
1.4 kB
51.2 - Recurrent Neural Network/[FTU Forum].url
1.4 kB
51.3 - Training RNNs Backprop/[FTU Forum].url
1.4 kB
51.4 - Types of RNNs/[FTU Forum].url
1.4 kB
51.5 - Need for LSTMGRU/[FTU Forum].url
1.4 kB
51.6 - LSTM/[FTU Forum].url
1.4 kB
51.7 - GRUs/[FTU Forum].url
1.4 kB
51.8 - Deep RNN/[FTU Forum].url
1.4 kB
51.9 - Bidirectional RNN/[FTU Forum].url
1.4 kB
52.1 - Questions and Answers/[FTU Forum].url
1.4 kB
53.1 - Self Driving Car Problem definition/[FTU Forum].url
1.4 kB
53.10 - NVIDIA’s end to end CNN model/[FTU Forum].url
1.4 kB
53.11 - Train the model/[FTU Forum].url
1.4 kB
53.12 - Test and visualize the output/[FTU Forum].url
1.4 kB
53.13 - Extensions/[FTU Forum].url
1.4 kB
53.14 - Assignment/[FTU Forum].url
1.4 kB
53.2 - Datasets/[FTU Forum].url
1.4 kB
53.2 - Datasets#/[FTU Forum].url
1.4 kB
53.3 - Data understanding & Analysis Files and folders/[FTU Forum].url
1.4 kB
53.4 - Dash-cam images and steering angles/[FTU Forum].url
1.4 kB
53.5 - Split the dataset Train vs Test/[FTU Forum].url
1.4 kB
53.6 - EDA Steering angles/[FTU Forum].url
1.4 kB
53.7 - Mean Baseline model simple/[FTU Forum].url
1.4 kB
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/[FTU Forum].url
1.4 kB
53.9 - Batch load the dataset/[FTU Forum].url
1.4 kB
54.1 - Real-world problem/[FTU Forum].url
1.4 kB
54.10 - MIDI music generation/[FTU Forum].url
1.4 kB
54.11 - Survey blog/[FTU Forum].url
1.4 kB
54.2 - Music representation/[FTU Forum].url
1.4 kB
54.3 - Char-RNN with abc-notation Char-RNN model/[FTU Forum].url
1.4 kB
54.4 - Char-RNN with abc-notation Data preparation/[FTU Forum].url
1.4 kB
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/[FTU Forum].url
1.4 kB
54.6 - Char-RNN with abc-notation State full RNN/[FTU Forum].url
1.4 kB
54.7 - Char-RNN with abc-notation Model architecture,Model training/[FTU Forum].url
1.4 kB
54.8 - Char-RNN with abc-notation Music generation/[FTU Forum].url
1.4 kB
54.9 - Char-RNN with abc-notation Generate tabla music/[FTU Forum].url
1.4 kB
55.1 - Human Activity Recognition Problem definition/[FTU Forum].url
1.4 kB
55.2 - Dataset understanding/[FTU Forum].url
1.4 kB
55.3 - Data cleaning & preprocessing/[FTU Forum].url
1.4 kB
55.4 - EDAUnivariate analysis/[FTU Forum].url
1.4 kB
55.5 - EDAData visualization using t-SNE/[FTU Forum].url
1.4 kB
55.6 - Classical ML models/[FTU Forum].url
1.4 kB
55.7 - Deep-learning Model/[FTU Forum].url
1.4 kB
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/[FTU Forum].url
1.4 kB
56.1 - Problem definition/[FTU Forum].url
1.4 kB
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/[FTU Forum].url
1.4 kB
56.11 - PageRank/[FTU Forum].url
1.4 kB
56.12 - Shortest Path/[FTU Forum].url
1.4 kB
56.13 - Connected-components/[FTU Forum].url
1.4 kB
56.14 - Adar Index/[FTU Forum].url
1.4 kB
56.15 - Kartz Centrality/[FTU Forum].url
1.4 kB
56.16 - HITS Score/[FTU Forum].url
1.4 kB
56.17 - SVD/[FTU Forum].url
1.4 kB
56.18 - Weight features/[FTU Forum].url
1.4 kB
56.19 - Modeling/[FTU Forum].url
1.4 kB
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/[FTU Forum].url
1.4 kB
56.3 - Data format & Limitations/[FTU Forum].url
1.4 kB
56.4 - Mapping to a supervised classification problem/[FTU Forum].url
1.4 kB
56.5 - Business constraints & Metrics/[FTU Forum].url
1.4 kB
56.6 - EDABasic Stats/[FTU Forum].url
1.4 kB
56.7 - EDAFollower and following stats/[FTU Forum].url
1.4 kB
56.8 - EDABinary Classification Task/[FTU Forum].url
1.4 kB
56.9 - EDATrain and test split/[FTU Forum].url
1.4 kB
57.1 - Introduction to Databases/[FTU Forum].url
1.4 kB
57.10 - ORDER BY/[FTU Forum].url
1.4 kB
57.11 - DISTINCT/[FTU Forum].url
1.4 kB
57.12 - WHERE, Comparison operators, NULL/[FTU Forum].url
1.4 kB
57.13 - Logical Operators/[FTU Forum].url
1.4 kB
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/[FTU Forum].url
1.4 kB
57.15 - GROUP BY/[FTU Forum].url
1.4 kB
57.16 - HAVING/[FTU Forum].url
1.4 kB
57.17 - Order of keywords#/[FTU Forum].url
1.4 kB
57.18 - Join and Natural Join/[FTU Forum].url
1.4 kB
57.19 - Inner, Left, Right and Outer joins/[FTU Forum].url
1.4 kB
57.2 - Why SQL/[FTU Forum].url
1.4 kB
57.20 - Sub QueriesNested QueriesInner Queries/[FTU Forum].url
1.4 kB
57.21 - DMLINSERT/[FTU Forum].url
1.4 kB
57.22 - DMLUPDATE , DELETE/[FTU Forum].url
1.4 kB
57.23 - DDLCREATE TABLE/[FTU Forum].url
1.4 kB
57.24 - DDLALTER ADD, MODIFY, DROP/[FTU Forum].url
1.4 kB
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/[FTU Forum].url
1.4 kB
57.26 - Data Control Language GRANT, REVOKE/[FTU Forum].url
1.4 kB
57.27 - Learning resources/[FTU Forum].url
1.4 kB
57.3 - Execution of an SQL statement/[FTU Forum].url
1.4 kB
57.4 - IMDB dataset/[FTU Forum].url
1.4 kB
57.5 - Installing MySQL/[FTU Forum].url
1.4 kB
57.6 - Load IMDB data/[FTU Forum].url
1.4 kB
57.7 - USE, DESCRIBE, SHOW TABLES/[FTU Forum].url
1.4 kB
57.8 - SELECT/[FTU Forum].url
1.4 kB
57.9 - LIMIT, OFFSET/[FTU Forum].url
1.4 kB
58.1 - AD-Click Predicition/[FTU Forum].url
1.4 kB
59.1 - Revision Questions/[FTU Forum].url
1.4 kB
59.2 - Questions/[FTU Forum].url
1.4 kB
59.3 - External resources for Interview Questions/[FTU Forum].url
1.4 kB
6.1 - Getting started with Matplotlib/[FTU Forum].url
1.4 kB
7.1 - Getting started with pandas/[FTU Forum].url
1.4 kB
7.2 - Data Frame Basics/[FTU Forum].url
1.4 kB
7.3 - Key Operations on Data Frames/[FTU Forum].url
1.4 kB
8.1 - Space and Time Complexity Find largest number in a list/[FTU Forum].url
1.4 kB
8.2 - Binary search/[FTU Forum].url
1.4 kB
8.3 - Find elements common in two lists/[FTU Forum].url
1.4 kB
8.4 - Find elements common in two lists using a HashtableDict/[FTU Forum].url
1.4 kB
9.1 - Introduction to IRIS dataset and 2D scatter plot/[FTU Forum].url
1.4 kB
9.10 - Percentiles and Quantiles/[FTU Forum].url
1.4 kB
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/[FTU Forum].url
1.4 kB
9.12 - Box-plot with Whiskers/[FTU Forum].url
1.4 kB
9.13 - Violin Plots/[FTU Forum].url
1.4 kB
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/[FTU Forum].url
1.4 kB
9.15 - Multivariate Probability Density, Contour Plot/[FTU Forum].url
1.4 kB
9.16 - Exercise Perform EDA on Haberman dataset/[FTU Forum].url
1.4 kB
9.2 - 3D scatter plot/[FTU Forum].url
1.4 kB
9.3 - Pair plots/[FTU Forum].url
1.4 kB
9.4 - Limitations of Pair Plots/[FTU Forum].url
1.4 kB
9.5 - Histogram and Introduction to PDF(Probability Density Function)/[FTU Forum].url
1.4 kB
9.6 - Univariate Analysis using PDF/[FTU Forum].url
1.4 kB
9.7 - CDF(Cumulative Distribution Function)/[FTU Forum].url
1.4 kB
9.8 - Mean, Variance and Standard Deviation/[FTU Forum].url
1.4 kB
9.9 - Median/[FTU Forum].url
1.4 kB
[FTU Forum].url
1.4 kB
58.1 - AD-Click Predicition/out_files/iframe_api
859 Bytes
58.1 - AD-Click Predicition/out_files/api.js.download
796 Bytes
1.1 - How to Learn from Appliedaicourse/How you can help Team-FTU.txt
241 Bytes
1.2 - How the Job Guarantee program works/How you can help Team-FTU.txt
241 Bytes
10.1 - Why learn it/How you can help Team-FTU.txt
241 Bytes
10.10 - Hyper Cube,Hyper Cuboid/How you can help Team-FTU.txt
241 Bytes
10.11 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/How you can help Team-FTU.txt
241 Bytes
10.3 - Dot Product and Angle between 2 Vectors/How you can help Team-FTU.txt
241 Bytes
10.4 - Projection and Unit Vector/How you can help Team-FTU.txt
241 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/How you can help Team-FTU.txt
241 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/How you can help Team-FTU.txt
241 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/How you can help Team-FTU.txt
241 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/How you can help Team-FTU.txt
241 Bytes
10.9 - Square ,Rectangle/How you can help Team-FTU.txt
241 Bytes
11.1 - Introduction to Probability and Statistics/How you can help Team-FTU.txt
241 Bytes
11.10 - How distributions are used/How you can help Team-FTU.txt
241 Bytes
11.11 - Chebyshev’s inequality/How you can help Team-FTU.txt
241 Bytes
11.12 - Discrete and Continuous Uniform distributions/How you can help Team-FTU.txt
241 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/How you can help Team-FTU.txt
241 Bytes
11.14 - Bernoulli and Binomial Distribution/How you can help Team-FTU.txt
241 Bytes
11.15 - Log Normal Distribution/How you can help Team-FTU.txt
241 Bytes
11.16 - Power law distribution/How you can help Team-FTU.txt
241 Bytes
11.17 - Box cox transform/How you can help Team-FTU.txt
241 Bytes
11.18 - Applications of non-gaussian distributions/How you can help Team-FTU.txt
241 Bytes
11.19 - Co-variance/How you can help Team-FTU.txt
241 Bytes
11.2 - Population and Sample/How you can help Team-FTU.txt
241 Bytes
11.20 - Pearson Correlation Coefficient/How you can help Team-FTU.txt
241 Bytes
11.21 - Spearman Rank Correlation Coefficient/How you can help Team-FTU.txt
241 Bytes
11.22 - Correlation vs Causation/How you can help Team-FTU.txt
241 Bytes
11.23 - How to use correlations/How you can help Team-FTU.txt
241 Bytes
11.24 - Confidence interval (C.I) Introduction/How you can help Team-FTU.txt
241 Bytes
11.25 - Computing confidence interval given the underlying distribution/How you can help Team-FTU.txt
241 Bytes
11.26 - C.I for mean of a normal random variable/How you can help Team-FTU.txt
241 Bytes
11.27 - Confidence interval using bootstrapping/How you can help Team-FTU.txt
241 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/How you can help Team-FTU.txt
241 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/How you can help Team-FTU.txt
241 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/How you can help Team-FTU.txt
241 Bytes
11.30 - Resampling and permutation test/How you can help Team-FTU.txt
241 Bytes
11.31 - K-S Test for similarity of two distributions/How you can help Team-FTU.txt
241 Bytes
11.32 - Code Snippet K-S Test/How you can help Team-FTU.txt
241 Bytes
11.33 - Hypothesis testing another example/How you can help Team-FTU.txt
241 Bytes
11.34 - Resampling and Permutation test another example/How you can help Team-FTU.txt
241 Bytes
11.35 - How to use hypothesis testing/How you can help Team-FTU.txt
241 Bytes
11.36 - Proportional Sampling/How you can help Team-FTU.txt
241 Bytes
11.37 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/How you can help Team-FTU.txt
241 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/How you can help Team-FTU.txt
241 Bytes
11.6 - Standard normal variate (Z) and standardization/How you can help Team-FTU.txt
241 Bytes
11.7 - Kernel density estimation/How you can help Team-FTU.txt
241 Bytes
11.8 - Sampling distribution & Central Limit theorem/How you can help Team-FTU.txt
241 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/How you can help Team-FTU.txt
241 Bytes
12.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
13.1 - What is Dimensionality reduction/How you can help Team-FTU.txt
241 Bytes
13.10 - Code to Load MNIST Data Set/How you can help Team-FTU.txt
241 Bytes
13.2 - Row Vector and Column Vector/How you can help Team-FTU.txt
241 Bytes
13.3 - How to represent a data set/How you can help Team-FTU.txt
241 Bytes
13.4 - How to represent a dataset as a Matrix/How you can help Team-FTU.txt
241 Bytes
13.5 - Data Preprocessing Feature Normalisation/How you can help Team-FTU.txt
241 Bytes
13.6 - Mean of a data matrix/How you can help Team-FTU.txt
241 Bytes
13.7 - Data Preprocessing Column Standardization/How you can help Team-FTU.txt
241 Bytes
13.8 - Co-variance of a Data Matrix/How you can help Team-FTU.txt
241 Bytes
13.9 - MNIST dataset (784 dimensional)/How you can help Team-FTU.txt
241 Bytes
14.1 - Why learn PCA/How you can help Team-FTU.txt
241 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/How you can help Team-FTU.txt
241 Bytes
14.2 - Geometric intuition of PCA/How you can help Team-FTU.txt
241 Bytes
14.3 - Mathematical objective function of PCA/How you can help Team-FTU.txt
241 Bytes
14.4 - Alternative formulation of PCA Distance minimization/How you can help Team-FTU.txt
241 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/How you can help Team-FTU.txt
241 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/How you can help Team-FTU.txt
241 Bytes
14.7 - Visualize MNIST dataset/How you can help Team-FTU.txt
241 Bytes
14.8 - Limitations of PCA/How you can help Team-FTU.txt
241 Bytes
14.9 - PCA Code example/How you can help Team-FTU.txt
241 Bytes
15.1 - What is t-SNE/How you can help Team-FTU.txt
241 Bytes
15.2 - Neighborhood of a point, Embedding/How you can help Team-FTU.txt
241 Bytes
15.3 - Geometric intuition of t-SNE/How you can help Team-FTU.txt
241 Bytes
15.4 - Crowding Problem/How you can help Team-FTU.txt
241 Bytes
15.5 - How to apply t-SNE and interpret its output/How you can help Team-FTU.txt
241 Bytes
15.6 - t-SNE on MNIST/How you can help Team-FTU.txt
241 Bytes
15.7 - Code example of t-SNE/How you can help Team-FTU.txt
241 Bytes
15.8 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
16.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/How you can help Team-FTU.txt
241 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/How you can help Team-FTU.txt
241 Bytes
17.11 - Bag of Words( Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.12 - Text Preprocessing( Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.14 - TF-IDF (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.15 - Word2Vec (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/How you can help Team-FTU.txt
241 Bytes
17.17 - Assignment-2 Apply t-SNE/How you can help Team-FTU.txt
241 Bytes
17.2 - Data Cleaning Deduplication/How you can help Team-FTU.txt
241 Bytes
17.3 - Why convert text to a vector/How you can help Team-FTU.txt
241 Bytes
17.4 - Bag of Words (BoW)/How you can help Team-FTU.txt
241 Bytes
17.5 - Text Preprocessing Stemming/How you can help Team-FTU.txt
241 Bytes
17.6 - uni-gram, bi-gram, n-grams/How you can help Team-FTU.txt
241 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/How you can help Team-FTU.txt
241 Bytes
17.8 - Why use log in IDF/How you can help Team-FTU.txt
241 Bytes
17.9 - Word2Vec/How you can help Team-FTU.txt
241 Bytes
18.1 - How “Classification” works/How you can help Team-FTU.txt
241 Bytes
18.10 - KNN Limitations/How you can help Team-FTU.txt
241 Bytes
18.11 - Decision surface for K-NN as K changes/How you can help Team-FTU.txt
241 Bytes
18.12 - Overfitting and Underfitting/How you can help Team-FTU.txt
241 Bytes
18.13 - Need for Cross validation/How you can help Team-FTU.txt
241 Bytes
18.14 - K-fold cross validation/How you can help Team-FTU.txt
241 Bytes
18.15 - Visualizing train, validation and test datasets/How you can help Team-FTU.txt
241 Bytes
18.16 - How to determine overfitting and underfitting/How you can help Team-FTU.txt
241 Bytes
18.17 - Time based splitting/How you can help Team-FTU.txt
241 Bytes
18.18 - k-NN for regression/How you can help Team-FTU.txt
241 Bytes
18.19 - Weighted k-NN/How you can help Team-FTU.txt
241 Bytes
18.2 - Data matrix notation/How you can help Team-FTU.txt
241 Bytes
18.20 - Voronoi diagram/How you can help Team-FTU.txt
241 Bytes
18.21 - Binary search tree/How you can help Team-FTU.txt
241 Bytes
18.22 - How to build a kd-tree/How you can help Team-FTU.txt
241 Bytes
18.23 - Find nearest neighbours using kd-tree/How you can help Team-FTU.txt
241 Bytes
18.24 - Limitations of Kd tree/How you can help Team-FTU.txt
241 Bytes
18.25 - Extensions/How you can help Team-FTU.txt
241 Bytes
18.26 - Hashing vs LSH/How you can help Team-FTU.txt
241 Bytes
18.27 - LSH for cosine similarity/How you can help Team-FTU.txt
241 Bytes
18.28 - LSH for euclidean distance/How you can help Team-FTU.txt
241 Bytes
18.29 - Probabilistic class label/How you can help Team-FTU.txt
241 Bytes
18.3 - Classification vs Regression (examples)/How you can help Team-FTU.txt
241 Bytes
18.30 - Code SampleDecision boundary/How you can help Team-FTU.txt
241 Bytes
18.31 - Code SampleCross Validation/How you can help Team-FTU.txt
241 Bytes
18.32 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/How you can help Team-FTU.txt
241 Bytes
18.5 - Failure cases of KNN/How you can help Team-FTU.txt
241 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/How you can help Team-FTU.txt
241 Bytes
18.7 - Cosine Distance & Cosine Similarity/How you can help Team-FTU.txt
241 Bytes
18.8 - How to measure the effectiveness of k-NN/How you can help Team-FTU.txt
241 Bytes
18.9 - TestEvaluation time and space complexity/How you can help Team-FTU.txt
241 Bytes
19.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
2.1 - Python, Anaconda and relevant packages installations/How you can help Team-FTU.txt
241 Bytes
2.10 - Control flow for loop/How you can help Team-FTU.txt
241 Bytes
2.11 - Control flow break and continue/How you can help Team-FTU.txt
241 Bytes
2.2 - Why learn Python/How you can help Team-FTU.txt
241 Bytes
2.3 - Keywords and identifiers/How you can help Team-FTU.txt
241 Bytes
2.4 - comments, indentation and statements/How you can help Team-FTU.txt
241 Bytes
2.5 - Variables and data types in Python/How you can help Team-FTU.txt
241 Bytes
2.6 - Standard Input and Output/How you can help Team-FTU.txt
241 Bytes
2.7 - Operators/How you can help Team-FTU.txt
241 Bytes
2.8 - Control flow if else/How you can help Team-FTU.txt
241 Bytes
2.9 - Control flow while loop/How you can help Team-FTU.txt
241 Bytes
20.1 - Introduction/How you can help Team-FTU.txt
241 Bytes
20.10 - Local reachability-density(A)/How you can help Team-FTU.txt
241 Bytes
20.11 - Local outlier Factor(A)/How you can help Team-FTU.txt
241 Bytes
20.12 - Impact of Scale & Column standardization/How you can help Team-FTU.txt
241 Bytes
20.13 - Interpretability/How you can help Team-FTU.txt
241 Bytes
20.14 - Feature Importance and Forward Feature selection/How you can help Team-FTU.txt
241 Bytes
20.15 - Handling categorical and numerical features/How you can help Team-FTU.txt
241 Bytes
20.16 - Handling missing values by imputation/How you can help Team-FTU.txt
241 Bytes
20.17 - curse of dimensionality/How you can help Team-FTU.txt
241 Bytes
20.18 - Bias-Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
20.19 - Intuitive understanding of bias-variance/How you can help Team-FTU.txt
241 Bytes
20.2 - Imbalanced vs balanced dataset/How you can help Team-FTU.txt
241 Bytes
20.20 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
20.21 - best and wrost case of algorithm/How you can help Team-FTU.txt
241 Bytes
20.3 - Multi-class classification/How you can help Team-FTU.txt
241 Bytes
20.4 - k-NN, given a distance or similarity matrix/How you can help Team-FTU.txt
241 Bytes
20.5 - Train and test set differences/How you can help Team-FTU.txt
241 Bytes
20.6 - Impact of outliers/How you can help Team-FTU.txt
241 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/How you can help Team-FTU.txt
241 Bytes
20.8 - k distance/How you can help Team-FTU.txt
241 Bytes
20.9 - Reachability-Distance(A,B)/How you can help Team-FTU.txt
241 Bytes
21.1 - Accuracy/How you can help Team-FTU.txt
241 Bytes
21.10 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/How you can help Team-FTU.txt
241 Bytes
21.3 - Precision and recall, F1-score/How you can help Team-FTU.txt
241 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/How you can help Team-FTU.txt
241 Bytes
21.5 - Log-loss/How you can help Team-FTU.txt
241 Bytes
21.6 - R-SquaredCoefficient of determination/How you can help Team-FTU.txt
241 Bytes
21.7 - Median absolute deviation (MAD)/How you can help Team-FTU.txt
241 Bytes
21.8 - Distribution of errors/How you can help Team-FTU.txt
241 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/How you can help Team-FTU.txt
241 Bytes
22.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
23.1 - Conditional probability/How you can help Team-FTU.txt
241 Bytes
23.10 - Bias and Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
23.11 - Feature importance and interpretability/How you can help Team-FTU.txt
241 Bytes
23.12 - Imbalanced data/How you can help Team-FTU.txt
241 Bytes
23.13 - Outliers/How you can help Team-FTU.txt
241 Bytes
23.14 - Missing values/How you can help Team-FTU.txt
241 Bytes
23.15 - Handling Numerical features (Gaussian NB)/How you can help Team-FTU.txt
241 Bytes
23.16 - Multiclass classification/How you can help Team-FTU.txt
241 Bytes
23.17 - Similarity or Distance matrix/How you can help Team-FTU.txt
241 Bytes
23.18 - Large dimensionality/How you can help Team-FTU.txt
241 Bytes
23.19 - Best and worst cases/How you can help Team-FTU.txt
241 Bytes
23.2 - Independent vs Mutually exclusive events/How you can help Team-FTU.txt
241 Bytes
23.20 - Code example/How you can help Team-FTU.txt
241 Bytes
23.21 - Assignment-4 Apply Naive Bayes/How you can help Team-FTU.txt
241 Bytes
23.22 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
23.3 - Bayes Theorem with examples/How you can help Team-FTU.txt
241 Bytes
23.4 - Exercise problems on Bayes Theorem/How you can help Team-FTU.txt
241 Bytes
23.5 - Naive Bayes algorithm/How you can help Team-FTU.txt
241 Bytes
23.6 - Toy example Train and test stages/How you can help Team-FTU.txt
241 Bytes
23.7 - Naive Bayes on Text data/How you can help Team-FTU.txt
241 Bytes
23.8 - LaplaceAdditive Smoothing/How you can help Team-FTU.txt
241 Bytes
23.9 - Log-probabilities for numerical stability/How you can help Team-FTU.txt
241 Bytes
24.1 - Geometric intuition of Logistic Regression/How you can help Team-FTU.txt
241 Bytes
24.10 - Column Standardization/How you can help Team-FTU.txt
241 Bytes
24.11 - Feature importance and Model interpretability/How you can help Team-FTU.txt
241 Bytes
24.12 - Collinearity of features/How you can help Team-FTU.txt
241 Bytes
24.13 - TestRun time space and time complexity/How you can help Team-FTU.txt
241 Bytes
24.14 - Real world cases/How you can help Team-FTU.txt
241 Bytes
24.15 - Non-linearly separable data & feature engineering/How you can help Team-FTU.txt
241 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/How you can help Team-FTU.txt
241 Bytes
24.17 - Assignment-5 Apply Logistic Regression/How you can help Team-FTU.txt
241 Bytes
24.18 - Extensions to Generalized linear models/How you can help Team-FTU.txt
241 Bytes
24.2 - Sigmoid function Squashing/How you can help Team-FTU.txt
241 Bytes
24.3 - Mathematical formulation of Objective function/How you can help Team-FTU.txt
241 Bytes
24.4 - Weight vector/How you can help Team-FTU.txt
241 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/How you can help Team-FTU.txt
241 Bytes
24.6 - L1 regularization and sparsity/How you can help Team-FTU.txt
241 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/How you can help Team-FTU.txt
241 Bytes
24.8 - Loss minimization interpretation/How you can help Team-FTU.txt
241 Bytes
24.9 - hyperparameters and random search/How you can help Team-FTU.txt
241 Bytes
25.1 - Geometric intuition of Linear Regression/How you can help Team-FTU.txt
241 Bytes
25.2 - Mathematical formulation/How you can help Team-FTU.txt
241 Bytes
25.3 - Real world Cases/How you can help Team-FTU.txt
241 Bytes
25.4 - Code sample for Linear Regression/How you can help Team-FTU.txt
241 Bytes
26.1 - Differentiation/How you can help Team-FTU.txt
241 Bytes
26.10 - Logistic regression formulation revisited/How you can help Team-FTU.txt
241 Bytes
26.11 - Why L1 regularization creates sparsity/How you can help Team-FTU.txt
241 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/How you can help Team-FTU.txt
241 Bytes
26.13 - Revision questions/How you can help Team-FTU.txt
241 Bytes
26.2 - Online differentiation tools/How you can help Team-FTU.txt
241 Bytes
26.3 - Maxima and Minima/How you can help Team-FTU.txt
241 Bytes
26.4 - Vector calculus Grad/How you can help Team-FTU.txt
241 Bytes
26.5 - Gradient descent geometric intuition/How you can help Team-FTU.txt
241 Bytes
26.6 - Learning rate/How you can help Team-FTU.txt
241 Bytes
26.7 - Gradient descent for linear regression/How you can help Team-FTU.txt
241 Bytes
26.8 - SGD algorithm/How you can help Team-FTU.txt
241 Bytes
26.9 - Constrained Optimization & PCA/How you can help Team-FTU.txt
241 Bytes
27.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
28.1 - Geometric Intution/How you can help Team-FTU.txt
241 Bytes
28.10 - Train and run time complexities/How you can help Team-FTU.txt
241 Bytes
28.11 - nu-SVM control errors and support vectors/How you can help Team-FTU.txt
241 Bytes
28.12 - SVM Regression/How you can help Team-FTU.txt
241 Bytes
28.13 - Cases/How you can help Team-FTU.txt
241 Bytes
28.14 - Code Sample/How you can help Team-FTU.txt
241 Bytes
28.15 - Assignment-7 Apply SVM/How you can help Team-FTU.txt
241 Bytes
28.16 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
28.2 - Mathematical derivation/How you can help Team-FTU.txt
241 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/How you can help Team-FTU.txt
241 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/How you can help Team-FTU.txt
241 Bytes
28.5 - Dual form of SVM formulation/How you can help Team-FTU.txt
241 Bytes
28.6 - kernel trick/How you can help Team-FTU.txt
241 Bytes
28.7 - Polynomial Kernel/How you can help Team-FTU.txt
241 Bytes
28.8 - RBF-Kernel/How you can help Team-FTU.txt
241 Bytes
28.9 - Domain specific Kernels/How you can help Team-FTU.txt
241 Bytes
29.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
3.1 - Lists/How you can help Team-FTU.txt
241 Bytes
3.2 - Tuples part 1/How you can help Team-FTU.txt
241 Bytes
3.3 - Tuples part-2/How you can help Team-FTU.txt
241 Bytes
3.4 - Sets/How you can help Team-FTU.txt
241 Bytes
3.5 - Dictionary/How you can help Team-FTU.txt
241 Bytes
3.6 - Strings/How you can help Team-FTU.txt
241 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/How you can help Team-FTU.txt
241 Bytes
30.10 - Overfitting and Underfitting/How you can help Team-FTU.txt
241 Bytes
30.11 - Train and Run time complexity/How you can help Team-FTU.txt
241 Bytes
30.12 - Regression using Decision Trees/How you can help Team-FTU.txt
241 Bytes
30.13 - Cases/How you can help Team-FTU.txt
241 Bytes
30.14 - Code Samples/How you can help Team-FTU.txt
241 Bytes
30.15 - Assignment-8 Apply Decision Trees/How you can help Team-FTU.txt
241 Bytes
30.16 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
30.2 - Sample Decision tree/How you can help Team-FTU.txt
241 Bytes
30.3 - Building a decision TreeEntropy/How you can help Team-FTU.txt
241 Bytes
30.4 - Building a decision TreeInformation Gain/How you can help Team-FTU.txt
241 Bytes
30.5 - Building a decision Tree Gini Impurity/How you can help Team-FTU.txt
241 Bytes
30.6 - Building a decision Tree Constructing a DT/How you can help Team-FTU.txt
241 Bytes
30.7 - Building a decision Tree Splitting numerical features/How you can help Team-FTU.txt
241 Bytes
30.8 - Feature standardization/How you can help Team-FTU.txt
241 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/How you can help Team-FTU.txt
241 Bytes
31.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
32.1 - What are ensembles/How you can help Team-FTU.txt
241 Bytes
32.10 - Residuals, Loss functions and gradients/How you can help Team-FTU.txt
241 Bytes
32.11 - Gradient Boosting/How you can help Team-FTU.txt
241 Bytes
32.12 - Regularization by Shrinkage/How you can help Team-FTU.txt
241 Bytes
32.13 - Train and Run time complexity/How you can help Team-FTU.txt
241 Bytes
32.14 - XGBoost Boosting + Randomization/How you can help Team-FTU.txt
241 Bytes
32.15 - AdaBoost geometric intuition/How you can help Team-FTU.txt
241 Bytes
32.16 - Stacking models/How you can help Team-FTU.txt
241 Bytes
32.17 - Cascading classifiers/How you can help Team-FTU.txt
241 Bytes
32.18 - Kaggle competitions vs Real world/How you can help Team-FTU.txt
241 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/How you can help Team-FTU.txt
241 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/How you can help Team-FTU.txt
241 Bytes
32.20 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
32.3 - Random Forest and their construction/How you can help Team-FTU.txt
241 Bytes
32.4 - Bias-Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
32.5 - Train and run time complexity/How you can help Team-FTU.txt
241 Bytes
32.6 - BaggingCode Sample/How you can help Team-FTU.txt
241 Bytes
32.7 - Extremely randomized trees/How you can help Team-FTU.txt
241 Bytes
32.8 - Random Tree Cases/How you can help Team-FTU.txt
241 Bytes
32.9 - Boosting Intuition/How you can help Team-FTU.txt
241 Bytes
33.1 - Introduction/How you can help Team-FTU.txt
241 Bytes
33.10 - Indicator variables/How you can help Team-FTU.txt
241 Bytes
33.11 - Feature binning/How you can help Team-FTU.txt
241 Bytes
33.12 - Interaction variables/How you can help Team-FTU.txt
241 Bytes
33.13 - Mathematical transforms/How you can help Team-FTU.txt
241 Bytes
33.14 - Model specific featurizations/How you can help Team-FTU.txt
241 Bytes
33.15 - Feature orthogonality/How you can help Team-FTU.txt
241 Bytes
33.16 - Domain specific featurizations/How you can help Team-FTU.txt
241 Bytes
33.17 - Feature slicing/How you can help Team-FTU.txt
241 Bytes
33.18 - Kaggle Winners solutions/How you can help Team-FTU.txt
241 Bytes
33.2 - Moving window for Time Series Data/How you can help Team-FTU.txt
241 Bytes
33.3 - Fourier decomposition/How you can help Team-FTU.txt
241 Bytes
33.4 - Deep learning features LSTM/How you can help Team-FTU.txt
241 Bytes
33.5 - Image histogram/How you can help Team-FTU.txt
241 Bytes
33.6 - Keypoints SIFT/How you can help Team-FTU.txt
241 Bytes
33.7 - Deep learning features CNN/How you can help Team-FTU.txt
241 Bytes
33.8 - Relational data/How you can help Team-FTU.txt
241 Bytes
33.9 - Graph data/How you can help Team-FTU.txt
241 Bytes
34.1 - Calibration of ModelsNeed for calibration/How you can help Team-FTU.txt
241 Bytes
34.10 - AB testing/How you can help Team-FTU.txt
241 Bytes
34.11 - Data Science Life cycle/How you can help Team-FTU.txt
241 Bytes
34.12 - VC dimension/How you can help Team-FTU.txt
241 Bytes
34.2 - Productionization and deployment of Machine Learning Models/How you can help Team-FTU.txt
241 Bytes
34.3 - Calibration Plots/How you can help Team-FTU.txt
241 Bytes
34.4 - Platt’s CalibrationScaling/How you can help Team-FTU.txt
241 Bytes
34.5 - Isotonic Regression/How you can help Team-FTU.txt
241 Bytes
34.6 - Code Samples/How you can help Team-FTU.txt
241 Bytes
34.7 - Modeling in the presence of outliers RANSAC/How you can help Team-FTU.txt
241 Bytes
34.8 - Productionizing models/How you can help Team-FTU.txt
241 Bytes
34.9 - Retraining models periodically/How you can help Team-FTU.txt
241 Bytes
35.1 - What is Clustering/How you can help Team-FTU.txt
241 Bytes
35.10 - K-Medoids/How you can help Team-FTU.txt
241 Bytes
35.11 - Determining the right K/How you can help Team-FTU.txt
241 Bytes
35.12 - Code Samples/How you can help Team-FTU.txt
241 Bytes
35.13 - Time and space complexity/How you can help Team-FTU.txt
241 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/How you can help Team-FTU.txt
241 Bytes
35.2 - Unsupervised learning/How you can help Team-FTU.txt
241 Bytes
35.3 - Applications/How you can help Team-FTU.txt
241 Bytes
35.4 - Metrics for Clustering/How you can help Team-FTU.txt
241 Bytes
35.5 - K-Means Geometric intuition, Centroids/How you can help Team-FTU.txt
241 Bytes
35.6 - K-Means Mathematical formulation Objective function/How you can help Team-FTU.txt
241 Bytes
35.7 - K-Means Algorithm/How you can help Team-FTU.txt
241 Bytes
35.8 - How to initialize K-Means++/How you can help Team-FTU.txt
241 Bytes
35.9 - Failure casesLimitations/How you can help Team-FTU.txt
241 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/How you can help Team-FTU.txt
241 Bytes
36.2 - Agglomerative Clustering/How you can help Team-FTU.txt
241 Bytes
36.3 - Proximity methods Advantages and Limitations/How you can help Team-FTU.txt
241 Bytes
36.4 - Time and Space Complexity/How you can help Team-FTU.txt
241 Bytes
36.5 - Limitations of Hierarchical Clustering/How you can help Team-FTU.txt
241 Bytes
36.6 - Code sample/How you can help Team-FTU.txt
241 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/How you can help Team-FTU.txt
241 Bytes
37.1 - Density based clustering/How you can help Team-FTU.txt
241 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/How you can help Team-FTU.txt
241 Bytes
37.11 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
37.2 - MinPts and Eps Density/How you can help Team-FTU.txt
241 Bytes
37.3 - Core, Border and Noise points/How you can help Team-FTU.txt
241 Bytes
37.4 - Density edge and Density connected points/How you can help Team-FTU.txt
241 Bytes
37.5 - DBSCAN Algorithm/How you can help Team-FTU.txt
241 Bytes
37.6 - Hyper Parameters MinPts and Eps/How you can help Team-FTU.txt
241 Bytes
37.7 - Advantages and Limitations of DBSCAN/How you can help Team-FTU.txt
241 Bytes
37.8 - Time and Space Complexity/How you can help Team-FTU.txt
241 Bytes
37.9 - Code samples/How you can help Team-FTU.txt
241 Bytes
38.1 - Problem formulation Movie reviews/How you can help Team-FTU.txt
241 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/How you can help Team-FTU.txt
241 Bytes
38.11 - Cold Start problem/How you can help Team-FTU.txt
241 Bytes
38.12 - Word vectors as MF/How you can help Team-FTU.txt
241 Bytes
38.13 - Eigen-Faces/How you can help Team-FTU.txt
241 Bytes
38.14 - Code example/How you can help Team-FTU.txt
241 Bytes
38.15 - Assignment-11 Apply Truncated SVD/How you can help Team-FTU.txt
241 Bytes
38.16 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
38.2 - Content based vs Collaborative Filtering/How you can help Team-FTU.txt
241 Bytes
38.3 - Similarity based Algorithms/How you can help Team-FTU.txt
241 Bytes
38.4 - Matrix Factorization PCA, SVD/How you can help Team-FTU.txt
241 Bytes
38.5 - Matrix Factorization NMF/How you can help Team-FTU.txt
241 Bytes
38.6 - Matrix Factorization for Collaborative filtering/How you can help Team-FTU.txt
241 Bytes
38.7 - Matrix Factorization for feature engineering/How you can help Team-FTU.txt
241 Bytes
38.8 - Clustering as MF/How you can help Team-FTU.txt
241 Bytes
38.9 - Hyperparameter tuning/How you can help Team-FTU.txt
241 Bytes
39.1 - Questions & Answers/How you can help Team-FTU.txt
241 Bytes
4.1 - Introduction/How you can help Team-FTU.txt
241 Bytes
4.10 - Debugging Python/How you can help Team-FTU.txt
241 Bytes
4.2 - Types of functions/How you can help Team-FTU.txt
241 Bytes
4.3 - Function arguments/How you can help Team-FTU.txt
241 Bytes
4.4 - Recursive functions/How you can help Team-FTU.txt
241 Bytes
4.5 - Lambda functions/How you can help Team-FTU.txt
241 Bytes
4.6 - Modules/How you can help Team-FTU.txt
241 Bytes
4.7 - Packages/How you can help Team-FTU.txt
241 Bytes
4.8 - File Handling/How you can help Team-FTU.txt
241 Bytes
4.9 - Exception Handling/How you can help Team-FTU.txt
241 Bytes
40.1 - BusinessReal world problem/How you can help Team-FTU.txt
241 Bytes
40.10 - Data Modeling Multi label Classification/How you can help Team-FTU.txt
241 Bytes
40.11 - Data preparation/How you can help Team-FTU.txt
241 Bytes
40.12 - Train-Test Split/How you can help Team-FTU.txt
241 Bytes
40.13 - Featurization/How you can help Team-FTU.txt
241 Bytes
40.14 - Logistic regression One VS Rest/How you can help Team-FTU.txt
241 Bytes
40.15 - Sampling data and tags+Weighted models/How you can help Team-FTU.txt
241 Bytes
40.16 - Logistic regression revisited/How you can help Team-FTU.txt
241 Bytes
40.17 - Why not use advanced techniques/How you can help Team-FTU.txt
241 Bytes
40.18 - Assignments/How you can help Team-FTU.txt
241 Bytes
40.2 - Business objectives and constraints/How you can help Team-FTU.txt
241 Bytes
40.3 - Mapping to an ML problem Data overview/How you can help Team-FTU.txt
241 Bytes
40.4 - Mapping to an ML problemML problem formulation/How you can help Team-FTU.txt
241 Bytes
40.5 - Mapping to an ML problemPerformance metrics/How you can help Team-FTU.txt
241 Bytes
40.6 - Hamming loss/How you can help Team-FTU.txt
241 Bytes
40.7 - EDAData Loading/How you can help Team-FTU.txt
241 Bytes
40.8 - EDAAnalysis of tags/How you can help Team-FTU.txt
241 Bytes
40.9 - EDAData Preprocessing/How you can help Team-FTU.txt
241 Bytes
41.1 - BusinessReal world problem Problem definition/How you can help Team-FTU.txt
241 Bytes
41.10 - EDA Feature analysis/How you can help Team-FTU.txt
241 Bytes
41.11 - EDA Data Visualization T-SNE/How you can help Team-FTU.txt
241 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/How you can help Team-FTU.txt
241 Bytes
41.13 - ML Models Loading Data/How you can help Team-FTU.txt
241 Bytes
41.14 - ML Models Random Model/How you can help Team-FTU.txt
241 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/How you can help Team-FTU.txt
241 Bytes
41.16 - ML Models XGBoost/How you can help Team-FTU.txt
241 Bytes
41.17 - Assignments/How you can help Team-FTU.txt
241 Bytes
41.2 - Business objectives and constraints/How you can help Team-FTU.txt
241 Bytes
41.3 - Mapping to an ML problem Data overview/How you can help Team-FTU.txt
241 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/How you can help Team-FTU.txt
241 Bytes
41.5 - Mapping to an ML problem Train-test split/How you can help Team-FTU.txt
241 Bytes
41.6 - EDA Basic Statistics/How you can help Team-FTU.txt
241 Bytes
41.7 - EDA Basic Feature Extraction/How you can help Team-FTU.txt
241 Bytes
41.8 - EDA Text Preprocessing/How you can help Team-FTU.txt
241 Bytes
41.9 - EDA Advanced Feature Extraction/How you can help Team-FTU.txt
241 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/How you can help Team-FTU.txt
241 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/How you can help Team-FTU.txt
241 Bytes
42.11 - Stemming/How you can help Team-FTU.txt
241 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/How you can help Team-FTU.txt
241 Bytes
42.13 - Code for bag of words based product similarity/How you can help Team-FTU.txt
241 Bytes
42.14 - TF-IDF featurizing text based on word-importance/How you can help Team-FTU.txt
241 Bytes
42.15 - Code for TF-IDF based product similarity/How you can help Team-FTU.txt
241 Bytes
42.16 - Code for IDF based product similarity/How you can help Team-FTU.txt
241 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/How you can help Team-FTU.txt
241 Bytes
42.18 - Code for Average Word2Vec product similarity/How you can help Team-FTU.txt
241 Bytes
42.19 - TF-IDF weighted Word2Vec/How you can help Team-FTU.txt
241 Bytes
42.2 - Plan of action/How you can help Team-FTU.txt
241 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/How you can help Team-FTU.txt
241 Bytes
42.21 - Weighted similarity using brand and color/How you can help Team-FTU.txt
241 Bytes
42.22 - Code for weighted similarity/How you can help Team-FTU.txt
241 Bytes
42.23 - Building a real world solution/How you can help Team-FTU.txt
241 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/How you can help Team-FTU.txt
241 Bytes
42.25 - Using Keras + Tensorflow to extract features/How you can help Team-FTU.txt
241 Bytes
42.26 - Visual similarity based product similarity/How you can help Team-FTU.txt
241 Bytes
42.27 - Measuring goodness of our solution AB testing/How you can help Team-FTU.txt
241 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/How you can help Team-FTU.txt
241 Bytes
42.3 - Amazon product advertising API/How you can help Team-FTU.txt
241 Bytes
42.4 - Data folders and paths/How you can help Team-FTU.txt
241 Bytes
42.5 - Overview of the data and Terminology/How you can help Team-FTU.txt
241 Bytes
42.6 - Data cleaning and understandingMissing data in various features/How you can help Team-FTU.txt
241 Bytes
42.7 - Understand duplicate rows/How you can help Team-FTU.txt
241 Bytes
42.8 - Remove duplicates Part 1/How you can help Team-FTU.txt
241 Bytes
42.9 - Remove duplicates Part 2/How you can help Team-FTU.txt
241 Bytes
43.1 - Businessreal world problem Problem definition/How you can help Team-FTU.txt
241 Bytes
43.10 - ML models – using byte files only Random Model/How you can help Team-FTU.txt
241 Bytes
43.11 - k-NN/How you can help Team-FTU.txt
241 Bytes
43.12 - Logistic regression/How you can help Team-FTU.txt
241 Bytes
43.13 - Random Forest and Xgboost/How you can help Team-FTU.txt
241 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/How you can help Team-FTU.txt
241 Bytes
43.15 - File-size feature/How you can help Team-FTU.txt
241 Bytes
43.16 - Univariate analysis/How you can help Team-FTU.txt
241 Bytes
43.17 - t-SNE analysis/How you can help Team-FTU.txt
241 Bytes
43.18 - ML models on ASM file features/How you can help Team-FTU.txt
241 Bytes
43.19 - Models on all features t-SNE/How you can help Team-FTU.txt
241 Bytes
43.2 - Businessreal world problem Objectives and constraints/How you can help Team-FTU.txt
241 Bytes
43.20 - Models on all features RandomForest and Xgboost/How you can help Team-FTU.txt
241 Bytes
43.21 - Assignments/How you can help Team-FTU.txt
241 Bytes
43.3 - Machine Learning problem mapping Data overview/How you can help Team-FTU.txt
241 Bytes
43.4 - Machine Learning problem mapping ML problem/How you can help Team-FTU.txt
241 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/How you can help Team-FTU.txt
241 Bytes
43.6 - Exploratory Data Analysis Class distribution/How you can help Team-FTU.txt
241 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/How you can help Team-FTU.txt
241 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/How you can help Team-FTU.txt
241 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/How you can help Team-FTU.txt
241 Bytes
44.1 - BusinessReal world problemProblem definition/How you can help Team-FTU.txt
241 Bytes
44.10 - Exploratory Data AnalysisCold start problem/How you can help Team-FTU.txt
241 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/How you can help Team-FTU.txt
241 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/How you can help Team-FTU.txt
241 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/How you can help Team-FTU.txt
241 Bytes
44.14 - ML ModelsSurprise library/How you can help Team-FTU.txt
241 Bytes
44.15 - Overview of the modelling strategy/How you can help Team-FTU.txt
241 Bytes
44.16 - Data Sampling/How you can help Team-FTU.txt
241 Bytes
44.17 - Google drive with intermediate files/How you can help Team-FTU.txt
241 Bytes
44.18 - Featurizations for regression/How you can help Team-FTU.txt
241 Bytes
44.19 - Data transformation for Surprise/How you can help Team-FTU.txt
241 Bytes
44.2 - Objectives and constraints/How you can help Team-FTU.txt
241 Bytes
44.20 - Xgboost with 13 features/How you can help Team-FTU.txt
241 Bytes
44.21 - Surprise Baseline model/How you can help Team-FTU.txt
241 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/How you can help Team-FTU.txt
241 Bytes
44.23 - Surprise KNN predictors/How you can help Team-FTU.txt
241 Bytes
44.24 - Matrix Factorization models using Surprise/How you can help Team-FTU.txt
241 Bytes
44.25 - SVD ++ with implicit feedback/How you can help Team-FTU.txt
241 Bytes
44.26 - Final models with all features and predictors/How you can help Team-FTU.txt
241 Bytes
44.27 - Comparison between various models/How you can help Team-FTU.txt
241 Bytes
44.28 - Assignments/How you can help Team-FTU.txt
241 Bytes
44.3 - Mapping to an ML problemData overview/How you can help Team-FTU.txt
241 Bytes
44.4 - Mapping to an ML problemML problem formulation/How you can help Team-FTU.txt
241 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/How you can help Team-FTU.txt
241 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/How you can help Team-FTU.txt
241 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/How you can help Team-FTU.txt
241 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/How you can help Team-FTU.txt
241 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/How you can help Team-FTU.txt
241 Bytes
45.1 - BusinessReal world problem Overview/How you can help Team-FTU.txt
241 Bytes
45.10 - Univariate AnalysisVariation Feature/How you can help Team-FTU.txt
241 Bytes
45.11 - Univariate AnalysisText feature/How you can help Team-FTU.txt
241 Bytes
45.12 - Machine Learning ModelsData preparation/How you can help Team-FTU.txt
241 Bytes
45.13 - Baseline Model Naive Bayes/How you can help Team-FTU.txt
241 Bytes
45.14 - K-Nearest Neighbors Classification/How you can help Team-FTU.txt
241 Bytes
45.15 - Logistic Regression with class balancing/How you can help Team-FTU.txt
241 Bytes
45.16 - Logistic Regression without class balancing/How you can help Team-FTU.txt
241 Bytes
45.17 - Linear-SVM/How you can help Team-FTU.txt
241 Bytes
45.18 - Random-Forest with one-hot encoded features/How you can help Team-FTU.txt
241 Bytes
45.19 - Random-Forest with response-coded features/How you can help Team-FTU.txt
241 Bytes
45.2 - Business objectives and constraints/How you can help Team-FTU.txt
241 Bytes
45.20 - Stacking Classifier/How you can help Team-FTU.txt
241 Bytes
45.21 - Majority Voting classifier/How you can help Team-FTU.txt
241 Bytes
45.22 - Assignments/How you can help Team-FTU.txt
241 Bytes
45.3 - ML problem formulation Data/How you can help Team-FTU.txt
241 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/How you can help Team-FTU.txt
241 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/How you can help Team-FTU.txt
241 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/How you can help Team-FTU.txt
241 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/How you can help Team-FTU.txt
241 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/How you can help Team-FTU.txt
241 Bytes
45.8 - Exploratory Data Analysis “Random” Model/How you can help Team-FTU.txt
241 Bytes
45.9 - Univariate AnalysisGene feature/How you can help Team-FTU.txt
241 Bytes
46.1 - BusinessReal world problem Overview/How you can help Team-FTU.txt
241 Bytes
46.10 - Data Cleaning Speed/How you can help Team-FTU.txt
241 Bytes
46.11 - Data Cleaning Distance/How you can help Team-FTU.txt
241 Bytes
46.12 - Data Cleaning Fare/How you can help Team-FTU.txt
241 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/How you can help Team-FTU.txt
241 Bytes
46.14 - Data PreparationClusteringSegmentation/How you can help Team-FTU.txt
241 Bytes
46.15 - Data PreparationTime binning/How you can help Team-FTU.txt
241 Bytes
46.16 - Data PreparationSmoothing time-series data/How you can help Team-FTU.txt
241 Bytes
46.17 - Data PreparationSmoothing time-series data cont/How you can help Team-FTU.txt
241 Bytes
46.18 - Data Preparation Time series and Fourier transforms/How you can help Team-FTU.txt
241 Bytes
46.19 - Ratios and previous-time-bin values/How you can help Team-FTU.txt
241 Bytes
46.2 - Objectives and Constraints/How you can help Team-FTU.txt
241 Bytes
46.20 - Simple moving average/How you can help Team-FTU.txt
241 Bytes
46.21 - Weighted Moving average/How you can help Team-FTU.txt
241 Bytes
46.22 - Exponential weighted moving average/How you can help Team-FTU.txt
241 Bytes
46.23 - Results/How you can help Team-FTU.txt
241 Bytes
46.24 - Regression models Train-Test split & Features/How you can help Team-FTU.txt
241 Bytes
46.25 - Linear regression/How you can help Team-FTU.txt
241 Bytes
46.26 - Random Forest regression/How you can help Team-FTU.txt
241 Bytes
46.27 - Xgboost Regression/How you can help Team-FTU.txt
241 Bytes
46.28 - Model comparison/How you can help Team-FTU.txt
241 Bytes
46.29 - Assignment/How you can help Team-FTU.txt
241 Bytes
46.3 - Mapping to ML problem Data/How you can help Team-FTU.txt
241 Bytes
46.4 - Mapping to ML problem dask dataframes/How you can help Team-FTU.txt
241 Bytes
46.5 - Mapping to ML problem FieldsFeatures/How you can help Team-FTU.txt
241 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/How you can help Team-FTU.txt
241 Bytes
46.7 - Mapping to ML problem Performance metrics/How you can help Team-FTU.txt
241 Bytes
46.8 - Data Cleaning Latitude and Longitude data/How you can help Team-FTU.txt
241 Bytes
46.9 - Data Cleaning Trip Duration/How you can help Team-FTU.txt
241 Bytes
47.1 - History of Neural networks and Deep Learning/How you can help Team-FTU.txt
241 Bytes
47.10 - Backpropagation/How you can help Team-FTU.txt
241 Bytes
47.11 - Activation functions/How you can help Team-FTU.txt
241 Bytes
47.12 - Vanishing Gradient problem/How you can help Team-FTU.txt
241 Bytes
47.13 - Bias-Variance tradeoff/How you can help Team-FTU.txt
241 Bytes
47.14 - Decision surfaces Playground/How you can help Team-FTU.txt
241 Bytes
47.2 - How Biological Neurons work/How you can help Team-FTU.txt
241 Bytes
47.3 - Growth of biological neural networks/How you can help Team-FTU.txt
241 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/How you can help Team-FTU.txt
241 Bytes
47.5 - Multi-Layered Perceptron (MLP)/How you can help Team-FTU.txt
241 Bytes
47.6 - Notation/How you can help Team-FTU.txt
241 Bytes
47.7 - Training a single-neuron model/How you can help Team-FTU.txt
241 Bytes
47.8 - Training an MLP Chain Rule/How you can help Team-FTU.txt
241 Bytes
47.9 - Training an MLPMemoization/How you can help Team-FTU.txt
241 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/How you can help Team-FTU.txt
241 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/How you can help Team-FTU.txt
241 Bytes
48.11 - OptimizersAdaGrad/How you can help Team-FTU.txt
241 Bytes
48.12 - Optimizers Adadelta andRMSProp/How you can help Team-FTU.txt
241 Bytes
48.13 - Adam/How you can help Team-FTU.txt
241 Bytes
48.14 - Which algorithm to choose when/How you can help Team-FTU.txt
241 Bytes
48.15 - Gradient Checking and clipping/How you can help Team-FTU.txt
241 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/How you can help Team-FTU.txt
241 Bytes
48.17 - How to train a Deep MLP/How you can help Team-FTU.txt
241 Bytes
48.18 - Auto Encoders/How you can help Team-FTU.txt
241 Bytes
48.19 - Word2Vec CBOW/How you can help Team-FTU.txt
241 Bytes
48.2 - Dropout layers & Regularization/How you can help Team-FTU.txt
241 Bytes
48.20 - Word2Vec Skip-gram/How you can help Team-FTU.txt
241 Bytes
48.21 - Word2Vec Algorithmic Optimizations/How you can help Team-FTU.txt
241 Bytes
48.3 - Rectified Linear Units (ReLU)/How you can help Team-FTU.txt
241 Bytes
48.4 - Weight initialization/How you can help Team-FTU.txt
241 Bytes
48.5 - Batch Normalization/How you can help Team-FTU.txt
241 Bytes
48.6 - OptimizersHill-descent analogy in 2D/How you can help Team-FTU.txt
241 Bytes
48.7 - OptimizersHill descent in 3D and contours/How you can help Team-FTU.txt
241 Bytes
48.8 - SGD Recap/How you can help Team-FTU.txt
241 Bytes
48.9 - Batch SGD with momentum/How you can help Team-FTU.txt
241 Bytes
49.1 - Tensorflow and Keras overview/How you can help Team-FTU.txt
241 Bytes
49.10 - Model 3 Batch Normalization/How you can help Team-FTU.txt
241 Bytes
49.11 - Model 4 Dropout/How you can help Team-FTU.txt
241 Bytes
49.12 - MNIST classification in Keras/How you can help Team-FTU.txt
241 Bytes
49.13 - Hyperparameter tuning in Keras/How you can help Team-FTU.txt
241 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/How you can help Team-FTU.txt
241 Bytes
49.2 - GPU vs CPU for Deep Learning/How you can help Team-FTU.txt
241 Bytes
49.3 - Google Colaboratory/How you can help Team-FTU.txt
241 Bytes
49.4 - Install TensorFlow/How you can help Team-FTU.txt
241 Bytes
49.5 - Online documentation and tutorials/How you can help Team-FTU.txt
241 Bytes
49.6 - Softmax Classifier on MNIST dataset/How you can help Team-FTU.txt
241 Bytes
49.7 - MLP Initialization/How you can help Team-FTU.txt
241 Bytes
49.8 - Model 1 Sigmoid activation/How you can help Team-FTU.txt
241 Bytes
49.9 - Model 2 ReLU activation/How you can help Team-FTU.txt
241 Bytes
5.1 - Numpy Introduction/How you can help Team-FTU.txt
241 Bytes
5.2 - Numerical operations on Numpy/How you can help Team-FTU.txt
241 Bytes
50.1 - Biological inspiration Visual Cortex/How you can help Team-FTU.txt
241 Bytes
50.10 - Data Augmentation/How you can help Team-FTU.txt
241 Bytes
50.11 - Convolution Layers in Keras/How you can help Team-FTU.txt
241 Bytes
50.12 - AlexNet/How you can help Team-FTU.txt
241 Bytes
50.13 - VGGNet/How you can help Team-FTU.txt
241 Bytes
50.14 - Residual Network/How you can help Team-FTU.txt
241 Bytes
50.15 - Inception Network/How you can help Team-FTU.txt
241 Bytes
50.16 - What is Transfer learning/How you can help Team-FTU.txt
241 Bytes
50.17 - Code example Cats vs Dogs/How you can help Team-FTU.txt
241 Bytes
50.18 - Code Example MNIST dataset/How you can help Team-FTU.txt
241 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/How you can help Team-FTU.txt
241 Bytes
50.2 - ConvolutionEdge Detection on images/How you can help Team-FTU.txt
241 Bytes
50.3 - ConvolutionPadding and strides/How you can help Team-FTU.txt
241 Bytes
50.4 - Convolution over RGB images/How you can help Team-FTU.txt
241 Bytes
50.5 - Convolutional layer/How you can help Team-FTU.txt
241 Bytes
50.6 - Max-pooling/How you can help Team-FTU.txt
241 Bytes
50.7 - CNN Training Optimization/How you can help Team-FTU.txt
241 Bytes
50.8 - Example CNN LeNet [1998]/How you can help Team-FTU.txt
241 Bytes
50.9 - ImageNet dataset/How you can help Team-FTU.txt
241 Bytes
51.1 - Why RNNs/How you can help Team-FTU.txt
241 Bytes
51.10 - Code example IMDB Sentiment classification/How you can help Team-FTU.txt
241 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/How you can help Team-FTU.txt
241 Bytes
51.2 - Recurrent Neural Network/How you can help Team-FTU.txt
241 Bytes
51.3 - Training RNNs Backprop/How you can help Team-FTU.txt
241 Bytes
51.4 - Types of RNNs/How you can help Team-FTU.txt
241 Bytes
51.5 - Need for LSTMGRU/How you can help Team-FTU.txt
241 Bytes
51.6 - LSTM/How you can help Team-FTU.txt
241 Bytes
51.7 - GRUs/How you can help Team-FTU.txt
241 Bytes
51.8 - Deep RNN/How you can help Team-FTU.txt
241 Bytes
51.9 - Bidirectional RNN/How you can help Team-FTU.txt
241 Bytes
52.1 - Questions and Answers/How you can help Team-FTU.txt
241 Bytes
53.1 - Self Driving Car Problem definition/How you can help Team-FTU.txt
241 Bytes
53.10 - NVIDIA’s end to end CNN model/How you can help Team-FTU.txt
241 Bytes
53.11 - Train the model/How you can help Team-FTU.txt
241 Bytes
53.12 - Test and visualize the output/How you can help Team-FTU.txt
241 Bytes
53.13 - Extensions/How you can help Team-FTU.txt
241 Bytes
53.14 - Assignment/How you can help Team-FTU.txt
241 Bytes
53.2 - Datasets/How you can help Team-FTU.txt
241 Bytes
53.2 - Datasets#/How you can help Team-FTU.txt
241 Bytes
53.3 - Data understanding & Analysis Files and folders/How you can help Team-FTU.txt
241 Bytes
53.4 - Dash-cam images and steering angles/How you can help Team-FTU.txt
241 Bytes
53.5 - Split the dataset Train vs Test/How you can help Team-FTU.txt
241 Bytes
53.6 - EDA Steering angles/How you can help Team-FTU.txt
241 Bytes
53.7 - Mean Baseline model simple/How you can help Team-FTU.txt
241 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/How you can help Team-FTU.txt
241 Bytes
53.9 - Batch load the dataset/How you can help Team-FTU.txt
241 Bytes
54.1 - Real-world problem/How you can help Team-FTU.txt
241 Bytes
54.10 - MIDI music generation/How you can help Team-FTU.txt
241 Bytes
54.11 - Survey blog/How you can help Team-FTU.txt
241 Bytes
54.2 - Music representation/How you can help Team-FTU.txt
241 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/How you can help Team-FTU.txt
241 Bytes
54.4 - Char-RNN with abc-notation Data preparation/How you can help Team-FTU.txt
241 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/How you can help Team-FTU.txt
241 Bytes
54.6 - Char-RNN with abc-notation State full RNN/How you can help Team-FTU.txt
241 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/How you can help Team-FTU.txt
241 Bytes
54.8 - Char-RNN with abc-notation Music generation/How you can help Team-FTU.txt
241 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/How you can help Team-FTU.txt
241 Bytes
55.1 - Human Activity Recognition Problem definition/How you can help Team-FTU.txt
241 Bytes
55.2 - Dataset understanding/How you can help Team-FTU.txt
241 Bytes
55.3 - Data cleaning & preprocessing/How you can help Team-FTU.txt
241 Bytes
55.4 - EDAUnivariate analysis/How you can help Team-FTU.txt
241 Bytes
55.5 - EDAData visualization using t-SNE/How you can help Team-FTU.txt
241 Bytes
55.6 - Classical ML models/How you can help Team-FTU.txt
241 Bytes
55.7 - Deep-learning Model/How you can help Team-FTU.txt
241 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/How you can help Team-FTU.txt
241 Bytes
56.1 - Problem definition/How you can help Team-FTU.txt
241 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/How you can help Team-FTU.txt
241 Bytes
56.11 - PageRank/How you can help Team-FTU.txt
241 Bytes
56.12 - Shortest Path/How you can help Team-FTU.txt
241 Bytes
56.13 - Connected-components/How you can help Team-FTU.txt
241 Bytes
56.14 - Adar Index/How you can help Team-FTU.txt
241 Bytes
56.15 - Kartz Centrality/How you can help Team-FTU.txt
241 Bytes
56.16 - HITS Score/How you can help Team-FTU.txt
241 Bytes
56.17 - SVD/How you can help Team-FTU.txt
241 Bytes
56.18 - Weight features/How you can help Team-FTU.txt
241 Bytes
56.19 - Modeling/How you can help Team-FTU.txt
241 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/How you can help Team-FTU.txt
241 Bytes
56.3 - Data format & Limitations/How you can help Team-FTU.txt
241 Bytes
56.4 - Mapping to a supervised classification problem/How you can help Team-FTU.txt
241 Bytes
56.5 - Business constraints & Metrics/How you can help Team-FTU.txt
241 Bytes
56.6 - EDABasic Stats/How you can help Team-FTU.txt
241 Bytes
56.7 - EDAFollower and following stats/How you can help Team-FTU.txt
241 Bytes
56.8 - EDABinary Classification Task/How you can help Team-FTU.txt
241 Bytes
56.9 - EDATrain and test split/How you can help Team-FTU.txt
241 Bytes
57.1 - Introduction to Databases/How you can help Team-FTU.txt
241 Bytes
57.10 - ORDER BY/How you can help Team-FTU.txt
241 Bytes
57.11 - DISTINCT/How you can help Team-FTU.txt
241 Bytes
57.12 - WHERE, Comparison operators, NULL/How you can help Team-FTU.txt
241 Bytes
57.13 - Logical Operators/How you can help Team-FTU.txt
241 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/How you can help Team-FTU.txt
241 Bytes
57.15 - GROUP BY/How you can help Team-FTU.txt
241 Bytes
57.16 - HAVING/How you can help Team-FTU.txt
241 Bytes
57.17 - Order of keywords#/How you can help Team-FTU.txt
241 Bytes
57.18 - Join and Natural Join/How you can help Team-FTU.txt
241 Bytes
57.19 - Inner, Left, Right and Outer joins/How you can help Team-FTU.txt
241 Bytes
57.2 - Why SQL/How you can help Team-FTU.txt
241 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/How you can help Team-FTU.txt
241 Bytes
57.21 - DMLINSERT/How you can help Team-FTU.txt
241 Bytes
57.22 - DMLUPDATE , DELETE/How you can help Team-FTU.txt
241 Bytes
57.23 - DDLCREATE TABLE/How you can help Team-FTU.txt
241 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/How you can help Team-FTU.txt
241 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/How you can help Team-FTU.txt
241 Bytes
57.26 - Data Control Language GRANT, REVOKE/How you can help Team-FTU.txt
241 Bytes
57.27 - Learning resources/How you can help Team-FTU.txt
241 Bytes
57.3 - Execution of an SQL statement/How you can help Team-FTU.txt
241 Bytes
57.4 - IMDB dataset/How you can help Team-FTU.txt
241 Bytes
57.5 - Installing MySQL/How you can help Team-FTU.txt
241 Bytes
57.6 - Load IMDB data/How you can help Team-FTU.txt
241 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/How you can help Team-FTU.txt
241 Bytes
57.8 - SELECT/How you can help Team-FTU.txt
241 Bytes
57.9 - LIMIT, OFFSET/How you can help Team-FTU.txt
241 Bytes
58.1 - AD-Click Predicition/How you can help Team-FTU.txt
241 Bytes
59.1 - Revision Questions/How you can help Team-FTU.txt
241 Bytes
59.2 - Questions/How you can help Team-FTU.txt
241 Bytes
59.3 - External resources for Interview Questions/How you can help Team-FTU.txt
241 Bytes
6.1 - Getting started with Matplotlib/How you can help Team-FTU.txt
241 Bytes
7.1 - Getting started with pandas/How you can help Team-FTU.txt
241 Bytes
7.2 - Data Frame Basics/How you can help Team-FTU.txt
241 Bytes
7.3 - Key Operations on Data Frames/How you can help Team-FTU.txt
241 Bytes
8.1 - Space and Time Complexity Find largest number in a list/How you can help Team-FTU.txt
241 Bytes
8.2 - Binary search/How you can help Team-FTU.txt
241 Bytes
8.3 - Find elements common in two lists/How you can help Team-FTU.txt
241 Bytes
8.4 - Find elements common in two lists using a HashtableDict/How you can help Team-FTU.txt
241 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/How you can help Team-FTU.txt
241 Bytes
9.10 - Percentiles and Quantiles/How you can help Team-FTU.txt
241 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/How you can help Team-FTU.txt
241 Bytes
9.12 - Box-plot with Whiskers/How you can help Team-FTU.txt
241 Bytes
9.13 - Violin Plots/How you can help Team-FTU.txt
241 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/How you can help Team-FTU.txt
241 Bytes
9.15 - Multivariate Probability Density, Contour Plot/How you can help Team-FTU.txt
241 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/How you can help Team-FTU.txt
241 Bytes
9.2 - 3D scatter plot/How you can help Team-FTU.txt
241 Bytes
9.3 - Pair plots/How you can help Team-FTU.txt
241 Bytes
9.4 - Limitations of Pair Plots/How you can help Team-FTU.txt
241 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/How you can help Team-FTU.txt
241 Bytes
9.6 - Univariate Analysis using PDF/How you can help Team-FTU.txt
241 Bytes
9.7 - CDF(Cumulative Distribution Function)/How you can help Team-FTU.txt
241 Bytes
9.8 - Mean, Variance and Standard Deviation/How you can help Team-FTU.txt
241 Bytes
9.9 - Median/How you can help Team-FTU.txt
241 Bytes
How you can help Team-FTU.txt
241 Bytes
1.1 - How to Learn from Appliedaicourse/[FreeCoursesOnline.Me].url
133 Bytes
1.2 - How the Job Guarantee program works/[FreeCoursesOnline.Me].url
133 Bytes
10.1 - Why learn it/[FreeCoursesOnline.Me].url
133 Bytes
10.10 - Hyper Cube,Hyper Cuboid/[FreeCoursesOnline.Me].url
133 Bytes
10.11 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/[FreeCoursesOnline.Me].url
133 Bytes
10.3 - Dot Product and Angle between 2 Vectors/[FreeCoursesOnline.Me].url
133 Bytes
10.4 - Projection and Unit Vector/[FreeCoursesOnline.Me].url
133 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/[FreeCoursesOnline.Me].url
133 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/[FreeCoursesOnline.Me].url
133 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/[FreeCoursesOnline.Me].url
133 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/[FreeCoursesOnline.Me].url
133 Bytes
10.9 - Square ,Rectangle/[FreeCoursesOnline.Me].url
133 Bytes
11.1 - Introduction to Probability and Statistics/[FreeCoursesOnline.Me].url
133 Bytes
11.10 - How distributions are used/[FreeCoursesOnline.Me].url
133 Bytes
11.11 - Chebyshev’s inequality/[FreeCoursesOnline.Me].url
133 Bytes
11.12 - Discrete and Continuous Uniform distributions/[FreeCoursesOnline.Me].url
133 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/[FreeCoursesOnline.Me].url
133 Bytes
11.14 - Bernoulli and Binomial Distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.15 - Log Normal Distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.16 - Power law distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.17 - Box cox transform/[FreeCoursesOnline.Me].url
133 Bytes
11.18 - Applications of non-gaussian distributions/[FreeCoursesOnline.Me].url
133 Bytes
11.19 - Co-variance/[FreeCoursesOnline.Me].url
133 Bytes
11.2 - Population and Sample/[FreeCoursesOnline.Me].url
133 Bytes
11.20 - Pearson Correlation Coefficient/[FreeCoursesOnline.Me].url
133 Bytes
11.21 - Spearman Rank Correlation Coefficient/[FreeCoursesOnline.Me].url
133 Bytes
11.22 - Correlation vs Causation/[FreeCoursesOnline.Me].url
133 Bytes
11.23 - How to use correlations/[FreeCoursesOnline.Me].url
133 Bytes
11.24 - Confidence interval (C.I) Introduction/[FreeCoursesOnline.Me].url
133 Bytes
11.25 - Computing confidence interval given the underlying distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.26 - C.I for mean of a normal random variable/[FreeCoursesOnline.Me].url
133 Bytes
11.27 - Confidence interval using bootstrapping/[FreeCoursesOnline.Me].url
133 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/[FreeCoursesOnline.Me].url
133 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/[FreeCoursesOnline.Me].url
133 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/[FreeCoursesOnline.Me].url
133 Bytes
11.30 - Resampling and permutation test/[FreeCoursesOnline.Me].url
133 Bytes
11.31 - K-S Test for similarity of two distributions/[FreeCoursesOnline.Me].url
133 Bytes
11.32 - Code Snippet K-S Test/[FreeCoursesOnline.Me].url
133 Bytes
11.33 - Hypothesis testing another example/[FreeCoursesOnline.Me].url
133 Bytes
11.34 - Resampling and Permutation test another example/[FreeCoursesOnline.Me].url
133 Bytes
11.35 - How to use hypothesis testing/[FreeCoursesOnline.Me].url
133 Bytes
11.36 - Proportional Sampling/[FreeCoursesOnline.Me].url
133 Bytes
11.37 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/[FreeCoursesOnline.Me].url
133 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/[FreeCoursesOnline.Me].url
133 Bytes
11.6 - Standard normal variate (Z) and standardization/[FreeCoursesOnline.Me].url
133 Bytes
11.7 - Kernel density estimation/[FreeCoursesOnline.Me].url
133 Bytes
11.8 - Sampling distribution & Central Limit theorem/[FreeCoursesOnline.Me].url
133 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/[FreeCoursesOnline.Me].url
133 Bytes
12.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
13.1 - What is Dimensionality reduction/[FreeCoursesOnline.Me].url
133 Bytes
13.10 - Code to Load MNIST Data Set/[FreeCoursesOnline.Me].url
133 Bytes
13.2 - Row Vector and Column Vector/[FreeCoursesOnline.Me].url
133 Bytes
13.3 - How to represent a data set/[FreeCoursesOnline.Me].url
133 Bytes
13.4 - How to represent a dataset as a Matrix/[FreeCoursesOnline.Me].url
133 Bytes
13.5 - Data Preprocessing Feature Normalisation/[FreeCoursesOnline.Me].url
133 Bytes
13.6 - Mean of a data matrix/[FreeCoursesOnline.Me].url
133 Bytes
13.7 - Data Preprocessing Column Standardization/[FreeCoursesOnline.Me].url
133 Bytes
13.8 - Co-variance of a Data Matrix/[FreeCoursesOnline.Me].url
133 Bytes
13.9 - MNIST dataset (784 dimensional)/[FreeCoursesOnline.Me].url
133 Bytes
14.1 - Why learn PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/[FreeCoursesOnline.Me].url
133 Bytes
14.2 - Geometric intuition of PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.3 - Mathematical objective function of PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.4 - Alternative formulation of PCA Distance minimization/[FreeCoursesOnline.Me].url
133 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/[FreeCoursesOnline.Me].url
133 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/[FreeCoursesOnline.Me].url
133 Bytes
14.7 - Visualize MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
14.8 - Limitations of PCA/[FreeCoursesOnline.Me].url
133 Bytes
14.9 - PCA Code example/[FreeCoursesOnline.Me].url
133 Bytes
15.1 - What is t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
15.2 - Neighborhood of a point, Embedding/[FreeCoursesOnline.Me].url
133 Bytes
15.3 - Geometric intuition of t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
15.4 - Crowding Problem/[FreeCoursesOnline.Me].url
133 Bytes
15.5 - How to apply t-SNE and interpret its output/[FreeCoursesOnline.Me].url
133 Bytes
15.6 - t-SNE on MNIST/[FreeCoursesOnline.Me].url
133 Bytes
15.7 - Code example of t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
15.8 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
16.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/[FreeCoursesOnline.Me].url
133 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/[FreeCoursesOnline.Me].url
133 Bytes
17.11 - Bag of Words( Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.12 - Text Preprocessing( Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.14 - TF-IDF (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.15 - Word2Vec (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/[FreeCoursesOnline.Me].url
133 Bytes
17.17 - Assignment-2 Apply t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
17.2 - Data Cleaning Deduplication/[FreeCoursesOnline.Me].url
133 Bytes
17.3 - Why convert text to a vector/[FreeCoursesOnline.Me].url
133 Bytes
17.4 - Bag of Words (BoW)/[FreeCoursesOnline.Me].url
133 Bytes
17.5 - Text Preprocessing Stemming/[FreeCoursesOnline.Me].url
133 Bytes
17.6 - uni-gram, bi-gram, n-grams/[FreeCoursesOnline.Me].url
133 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/[FreeCoursesOnline.Me].url
133 Bytes
17.8 - Why use log in IDF/[FreeCoursesOnline.Me].url
133 Bytes
17.9 - Word2Vec/[FreeCoursesOnline.Me].url
133 Bytes
18.1 - How “Classification” works/[FreeCoursesOnline.Me].url
133 Bytes
18.10 - KNN Limitations/[FreeCoursesOnline.Me].url
133 Bytes
18.11 - Decision surface for K-NN as K changes/[FreeCoursesOnline.Me].url
133 Bytes
18.12 - Overfitting and Underfitting/[FreeCoursesOnline.Me].url
133 Bytes
18.13 - Need for Cross validation/[FreeCoursesOnline.Me].url
133 Bytes
18.14 - K-fold cross validation/[FreeCoursesOnline.Me].url
133 Bytes
18.15 - Visualizing train, validation and test datasets/[FreeCoursesOnline.Me].url
133 Bytes
18.16 - How to determine overfitting and underfitting/[FreeCoursesOnline.Me].url
133 Bytes
18.17 - Time based splitting/[FreeCoursesOnline.Me].url
133 Bytes
18.18 - k-NN for regression/[FreeCoursesOnline.Me].url
133 Bytes
18.19 - Weighted k-NN/[FreeCoursesOnline.Me].url
133 Bytes
18.2 - Data matrix notation/[FreeCoursesOnline.Me].url
133 Bytes
18.20 - Voronoi diagram/[FreeCoursesOnline.Me].url
133 Bytes
18.21 - Binary search tree/[FreeCoursesOnline.Me].url
133 Bytes
18.22 - How to build a kd-tree/[FreeCoursesOnline.Me].url
133 Bytes
18.23 - Find nearest neighbours using kd-tree/[FreeCoursesOnline.Me].url
133 Bytes
18.24 - Limitations of Kd tree/[FreeCoursesOnline.Me].url
133 Bytes
18.25 - Extensions/[FreeCoursesOnline.Me].url
133 Bytes
18.26 - Hashing vs LSH/[FreeCoursesOnline.Me].url
133 Bytes
18.27 - LSH for cosine similarity/[FreeCoursesOnline.Me].url
133 Bytes
18.28 - LSH for euclidean distance/[FreeCoursesOnline.Me].url
133 Bytes
18.29 - Probabilistic class label/[FreeCoursesOnline.Me].url
133 Bytes
18.3 - Classification vs Regression (examples)/[FreeCoursesOnline.Me].url
133 Bytes
18.30 - Code SampleDecision boundary/[FreeCoursesOnline.Me].url
133 Bytes
18.31 - Code SampleCross Validation/[FreeCoursesOnline.Me].url
133 Bytes
18.32 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/[FreeCoursesOnline.Me].url
133 Bytes
18.5 - Failure cases of KNN/[FreeCoursesOnline.Me].url
133 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/[FreeCoursesOnline.Me].url
133 Bytes
18.7 - Cosine Distance & Cosine Similarity/[FreeCoursesOnline.Me].url
133 Bytes
18.8 - How to measure the effectiveness of k-NN/[FreeCoursesOnline.Me].url
133 Bytes
18.9 - TestEvaluation time and space complexity/[FreeCoursesOnline.Me].url
133 Bytes
19.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
2.1 - Python, Anaconda and relevant packages installations/[FreeCoursesOnline.Me].url
133 Bytes
2.10 - Control flow for loop/[FreeCoursesOnline.Me].url
133 Bytes
2.11 - Control flow break and continue/[FreeCoursesOnline.Me].url
133 Bytes
2.2 - Why learn Python/[FreeCoursesOnline.Me].url
133 Bytes
2.3 - Keywords and identifiers/[FreeCoursesOnline.Me].url
133 Bytes
2.4 - comments, indentation and statements/[FreeCoursesOnline.Me].url
133 Bytes
2.5 - Variables and data types in Python/[FreeCoursesOnline.Me].url
133 Bytes
2.6 - Standard Input and Output/[FreeCoursesOnline.Me].url
133 Bytes
2.7 - Operators/[FreeCoursesOnline.Me].url
133 Bytes
2.8 - Control flow if else/[FreeCoursesOnline.Me].url
133 Bytes
2.9 - Control flow while loop/[FreeCoursesOnline.Me].url
133 Bytes
20.1 - Introduction/[FreeCoursesOnline.Me].url
133 Bytes
20.10 - Local reachability-density(A)/[FreeCoursesOnline.Me].url
133 Bytes
20.11 - Local outlier Factor(A)/[FreeCoursesOnline.Me].url
133 Bytes
20.12 - Impact of Scale & Column standardization/[FreeCoursesOnline.Me].url
133 Bytes
20.13 - Interpretability/[FreeCoursesOnline.Me].url
133 Bytes
20.14 - Feature Importance and Forward Feature selection/[FreeCoursesOnline.Me].url
133 Bytes
20.15 - Handling categorical and numerical features/[FreeCoursesOnline.Me].url
133 Bytes
20.16 - Handling missing values by imputation/[FreeCoursesOnline.Me].url
133 Bytes
20.17 - curse of dimensionality/[FreeCoursesOnline.Me].url
133 Bytes
20.18 - Bias-Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
20.19 - Intuitive understanding of bias-variance/[FreeCoursesOnline.Me].url
133 Bytes
20.2 - Imbalanced vs balanced dataset/[FreeCoursesOnline.Me].url
133 Bytes
20.20 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
20.21 - best and wrost case of algorithm/[FreeCoursesOnline.Me].url
133 Bytes
20.3 - Multi-class classification/[FreeCoursesOnline.Me].url
133 Bytes
20.4 - k-NN, given a distance or similarity matrix/[FreeCoursesOnline.Me].url
133 Bytes
20.5 - Train and test set differences/[FreeCoursesOnline.Me].url
133 Bytes
20.6 - Impact of outliers/[FreeCoursesOnline.Me].url
133 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/[FreeCoursesOnline.Me].url
133 Bytes
20.8 - k distance/[FreeCoursesOnline.Me].url
133 Bytes
20.9 - Reachability-Distance(A,B)/[FreeCoursesOnline.Me].url
133 Bytes
21.1 - Accuracy/[FreeCoursesOnline.Me].url
133 Bytes
21.10 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/[FreeCoursesOnline.Me].url
133 Bytes
21.3 - Precision and recall, F1-score/[FreeCoursesOnline.Me].url
133 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/[FreeCoursesOnline.Me].url
133 Bytes
21.5 - Log-loss/[FreeCoursesOnline.Me].url
133 Bytes
21.6 - R-SquaredCoefficient of determination/[FreeCoursesOnline.Me].url
133 Bytes
21.7 - Median absolute deviation (MAD)/[FreeCoursesOnline.Me].url
133 Bytes
21.8 - Distribution of errors/[FreeCoursesOnline.Me].url
133 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/[FreeCoursesOnline.Me].url
133 Bytes
22.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
23.1 - Conditional probability/[FreeCoursesOnline.Me].url
133 Bytes
23.10 - Bias and Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
23.11 - Feature importance and interpretability/[FreeCoursesOnline.Me].url
133 Bytes
23.12 - Imbalanced data/[FreeCoursesOnline.Me].url
133 Bytes
23.13 - Outliers/[FreeCoursesOnline.Me].url
133 Bytes
23.14 - Missing values/[FreeCoursesOnline.Me].url
133 Bytes
23.15 - Handling Numerical features (Gaussian NB)/[FreeCoursesOnline.Me].url
133 Bytes
23.16 - Multiclass classification/[FreeCoursesOnline.Me].url
133 Bytes
23.17 - Similarity or Distance matrix/[FreeCoursesOnline.Me].url
133 Bytes
23.18 - Large dimensionality/[FreeCoursesOnline.Me].url
133 Bytes
23.19 - Best and worst cases/[FreeCoursesOnline.Me].url
133 Bytes
23.2 - Independent vs Mutually exclusive events/[FreeCoursesOnline.Me].url
133 Bytes
23.20 - Code example/[FreeCoursesOnline.Me].url
133 Bytes
23.21 - Assignment-4 Apply Naive Bayes/[FreeCoursesOnline.Me].url
133 Bytes
23.22 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
23.3 - Bayes Theorem with examples/[FreeCoursesOnline.Me].url
133 Bytes
23.4 - Exercise problems on Bayes Theorem/[FreeCoursesOnline.Me].url
133 Bytes
23.5 - Naive Bayes algorithm/[FreeCoursesOnline.Me].url
133 Bytes
23.6 - Toy example Train and test stages/[FreeCoursesOnline.Me].url
133 Bytes
23.7 - Naive Bayes on Text data/[FreeCoursesOnline.Me].url
133 Bytes
23.8 - LaplaceAdditive Smoothing/[FreeCoursesOnline.Me].url
133 Bytes
23.9 - Log-probabilities for numerical stability/[FreeCoursesOnline.Me].url
133 Bytes
24.1 - Geometric intuition of Logistic Regression/[FreeCoursesOnline.Me].url
133 Bytes
24.10 - Column Standardization/[FreeCoursesOnline.Me].url
133 Bytes
24.11 - Feature importance and Model interpretability/[FreeCoursesOnline.Me].url
133 Bytes
24.12 - Collinearity of features/[FreeCoursesOnline.Me].url
133 Bytes
24.13 - TestRun time space and time complexity/[FreeCoursesOnline.Me].url
133 Bytes
24.14 - Real world cases/[FreeCoursesOnline.Me].url
133 Bytes
24.15 - Non-linearly separable data & feature engineering/[FreeCoursesOnline.Me].url
133 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/[FreeCoursesOnline.Me].url
133 Bytes
24.17 - Assignment-5 Apply Logistic Regression/[FreeCoursesOnline.Me].url
133 Bytes
24.18 - Extensions to Generalized linear models/[FreeCoursesOnline.Me].url
133 Bytes
24.2 - Sigmoid function Squashing/[FreeCoursesOnline.Me].url
133 Bytes
24.3 - Mathematical formulation of Objective function/[FreeCoursesOnline.Me].url
133 Bytes
24.4 - Weight vector/[FreeCoursesOnline.Me].url
133 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/[FreeCoursesOnline.Me].url
133 Bytes
24.6 - L1 regularization and sparsity/[FreeCoursesOnline.Me].url
133 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/[FreeCoursesOnline.Me].url
133 Bytes
24.8 - Loss minimization interpretation/[FreeCoursesOnline.Me].url
133 Bytes
24.9 - hyperparameters and random search/[FreeCoursesOnline.Me].url
133 Bytes
25.1 - Geometric intuition of Linear Regression/[FreeCoursesOnline.Me].url
133 Bytes
25.2 - Mathematical formulation/[FreeCoursesOnline.Me].url
133 Bytes
25.3 - Real world Cases/[FreeCoursesOnline.Me].url
133 Bytes
25.4 - Code sample for Linear Regression/[FreeCoursesOnline.Me].url
133 Bytes
26.1 - Differentiation/[FreeCoursesOnline.Me].url
133 Bytes
26.10 - Logistic regression formulation revisited/[FreeCoursesOnline.Me].url
133 Bytes
26.11 - Why L1 regularization creates sparsity/[FreeCoursesOnline.Me].url
133 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/[FreeCoursesOnline.Me].url
133 Bytes
26.13 - Revision questions/[FreeCoursesOnline.Me].url
133 Bytes
26.2 - Online differentiation tools/[FreeCoursesOnline.Me].url
133 Bytes
26.3 - Maxima and Minima/[FreeCoursesOnline.Me].url
133 Bytes
26.4 - Vector calculus Grad/[FreeCoursesOnline.Me].url
133 Bytes
26.5 - Gradient descent geometric intuition/[FreeCoursesOnline.Me].url
133 Bytes
26.6 - Learning rate/[FreeCoursesOnline.Me].url
133 Bytes
26.7 - Gradient descent for linear regression/[FreeCoursesOnline.Me].url
133 Bytes
26.8 - SGD algorithm/[FreeCoursesOnline.Me].url
133 Bytes
26.9 - Constrained Optimization & PCA/[FreeCoursesOnline.Me].url
133 Bytes
27.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
28.1 - Geometric Intution/[FreeCoursesOnline.Me].url
133 Bytes
28.10 - Train and run time complexities/[FreeCoursesOnline.Me].url
133 Bytes
28.11 - nu-SVM control errors and support vectors/[FreeCoursesOnline.Me].url
133 Bytes
28.12 - SVM Regression/[FreeCoursesOnline.Me].url
133 Bytes
28.13 - Cases/[FreeCoursesOnline.Me].url
133 Bytes
28.14 - Code Sample/[FreeCoursesOnline.Me].url
133 Bytes
28.15 - Assignment-7 Apply SVM/[FreeCoursesOnline.Me].url
133 Bytes
28.16 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
28.2 - Mathematical derivation/[FreeCoursesOnline.Me].url
133 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/[FreeCoursesOnline.Me].url
133 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/[FreeCoursesOnline.Me].url
133 Bytes
28.5 - Dual form of SVM formulation/[FreeCoursesOnline.Me].url
133 Bytes
28.6 - kernel trick/[FreeCoursesOnline.Me].url
133 Bytes
28.7 - Polynomial Kernel/[FreeCoursesOnline.Me].url
133 Bytes
28.8 - RBF-Kernel/[FreeCoursesOnline.Me].url
133 Bytes
28.9 - Domain specific Kernels/[FreeCoursesOnline.Me].url
133 Bytes
29.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
3.1 - Lists/[FreeCoursesOnline.Me].url
133 Bytes
3.2 - Tuples part 1/[FreeCoursesOnline.Me].url
133 Bytes
3.3 - Tuples part-2/[FreeCoursesOnline.Me].url
133 Bytes
3.4 - Sets/[FreeCoursesOnline.Me].url
133 Bytes
3.5 - Dictionary/[FreeCoursesOnline.Me].url
133 Bytes
3.6 - Strings/[FreeCoursesOnline.Me].url
133 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/[FreeCoursesOnline.Me].url
133 Bytes
30.10 - Overfitting and Underfitting/[FreeCoursesOnline.Me].url
133 Bytes
30.11 - Train and Run time complexity/[FreeCoursesOnline.Me].url
133 Bytes
30.12 - Regression using Decision Trees/[FreeCoursesOnline.Me].url
133 Bytes
30.13 - Cases/[FreeCoursesOnline.Me].url
133 Bytes
30.14 - Code Samples/[FreeCoursesOnline.Me].url
133 Bytes
30.15 - Assignment-8 Apply Decision Trees/[FreeCoursesOnline.Me].url
133 Bytes
30.16 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
30.2 - Sample Decision tree/[FreeCoursesOnline.Me].url
133 Bytes
30.3 - Building a decision TreeEntropy/[FreeCoursesOnline.Me].url
133 Bytes
30.4 - Building a decision TreeInformation Gain/[FreeCoursesOnline.Me].url
133 Bytes
30.5 - Building a decision Tree Gini Impurity/[FreeCoursesOnline.Me].url
133 Bytes
30.6 - Building a decision Tree Constructing a DT/[FreeCoursesOnline.Me].url
133 Bytes
30.7 - Building a decision Tree Splitting numerical features/[FreeCoursesOnline.Me].url
133 Bytes
30.8 - Feature standardization/[FreeCoursesOnline.Me].url
133 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/[FreeCoursesOnline.Me].url
133 Bytes
31.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
32.1 - What are ensembles/[FreeCoursesOnline.Me].url
133 Bytes
32.10 - Residuals, Loss functions and gradients/[FreeCoursesOnline.Me].url
133 Bytes
32.11 - Gradient Boosting/[FreeCoursesOnline.Me].url
133 Bytes
32.12 - Regularization by Shrinkage/[FreeCoursesOnline.Me].url
133 Bytes
32.13 - Train and Run time complexity/[FreeCoursesOnline.Me].url
133 Bytes
32.14 - XGBoost Boosting + Randomization/[FreeCoursesOnline.Me].url
133 Bytes
32.15 - AdaBoost geometric intuition/[FreeCoursesOnline.Me].url
133 Bytes
32.16 - Stacking models/[FreeCoursesOnline.Me].url
133 Bytes
32.17 - Cascading classifiers/[FreeCoursesOnline.Me].url
133 Bytes
32.18 - Kaggle competitions vs Real world/[FreeCoursesOnline.Me].url
133 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/[FreeCoursesOnline.Me].url
133 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/[FreeCoursesOnline.Me].url
133 Bytes
32.20 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
32.3 - Random Forest and their construction/[FreeCoursesOnline.Me].url
133 Bytes
32.4 - Bias-Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
32.5 - Train and run time complexity/[FreeCoursesOnline.Me].url
133 Bytes
32.6 - BaggingCode Sample/[FreeCoursesOnline.Me].url
133 Bytes
32.7 - Extremely randomized trees/[FreeCoursesOnline.Me].url
133 Bytes
32.8 - Random Tree Cases/[FreeCoursesOnline.Me].url
133 Bytes
32.9 - Boosting Intuition/[FreeCoursesOnline.Me].url
133 Bytes
33.1 - Introduction/[FreeCoursesOnline.Me].url
133 Bytes
33.10 - Indicator variables/[FreeCoursesOnline.Me].url
133 Bytes
33.11 - Feature binning/[FreeCoursesOnline.Me].url
133 Bytes
33.12 - Interaction variables/[FreeCoursesOnline.Me].url
133 Bytes
33.13 - Mathematical transforms/[FreeCoursesOnline.Me].url
133 Bytes
33.14 - Model specific featurizations/[FreeCoursesOnline.Me].url
133 Bytes
33.15 - Feature orthogonality/[FreeCoursesOnline.Me].url
133 Bytes
33.16 - Domain specific featurizations/[FreeCoursesOnline.Me].url
133 Bytes
33.17 - Feature slicing/[FreeCoursesOnline.Me].url
133 Bytes
33.18 - Kaggle Winners solutions/[FreeCoursesOnline.Me].url
133 Bytes
33.2 - Moving window for Time Series Data/[FreeCoursesOnline.Me].url
133 Bytes
33.3 - Fourier decomposition/[FreeCoursesOnline.Me].url
133 Bytes
33.4 - Deep learning features LSTM/[FreeCoursesOnline.Me].url
133 Bytes
33.5 - Image histogram/[FreeCoursesOnline.Me].url
133 Bytes
33.6 - Keypoints SIFT/[FreeCoursesOnline.Me].url
133 Bytes
33.7 - Deep learning features CNN/[FreeCoursesOnline.Me].url
133 Bytes
33.8 - Relational data/[FreeCoursesOnline.Me].url
133 Bytes
33.9 - Graph data/[FreeCoursesOnline.Me].url
133 Bytes
34.1 - Calibration of ModelsNeed for calibration/[FreeCoursesOnline.Me].url
133 Bytes
34.10 - AB testing/[FreeCoursesOnline.Me].url
133 Bytes
34.11 - Data Science Life cycle/[FreeCoursesOnline.Me].url
133 Bytes
34.12 - VC dimension/[FreeCoursesOnline.Me].url
133 Bytes
34.2 - Productionization and deployment of Machine Learning Models/[FreeCoursesOnline.Me].url
133 Bytes
34.3 - Calibration Plots/[FreeCoursesOnline.Me].url
133 Bytes
34.4 - Platt’s CalibrationScaling/[FreeCoursesOnline.Me].url
133 Bytes
34.5 - Isotonic Regression/[FreeCoursesOnline.Me].url
133 Bytes
34.6 - Code Samples/[FreeCoursesOnline.Me].url
133 Bytes
34.7 - Modeling in the presence of outliers RANSAC/[FreeCoursesOnline.Me].url
133 Bytes
34.8 - Productionizing models/[FreeCoursesOnline.Me].url
133 Bytes
34.9 - Retraining models periodically/[FreeCoursesOnline.Me].url
133 Bytes
35.1 - What is Clustering/[FreeCoursesOnline.Me].url
133 Bytes
35.10 - K-Medoids/[FreeCoursesOnline.Me].url
133 Bytes
35.11 - Determining the right K/[FreeCoursesOnline.Me].url
133 Bytes
35.12 - Code Samples/[FreeCoursesOnline.Me].url
133 Bytes
35.13 - Time and space complexity/[FreeCoursesOnline.Me].url
133 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeCoursesOnline.Me].url
133 Bytes
35.2 - Unsupervised learning/[FreeCoursesOnline.Me].url
133 Bytes
35.3 - Applications/[FreeCoursesOnline.Me].url
133 Bytes
35.4 - Metrics for Clustering/[FreeCoursesOnline.Me].url
133 Bytes
35.5 - K-Means Geometric intuition, Centroids/[FreeCoursesOnline.Me].url
133 Bytes
35.6 - K-Means Mathematical formulation Objective function/[FreeCoursesOnline.Me].url
133 Bytes
35.7 - K-Means Algorithm/[FreeCoursesOnline.Me].url
133 Bytes
35.8 - How to initialize K-Means++/[FreeCoursesOnline.Me].url
133 Bytes
35.9 - Failure casesLimitations/[FreeCoursesOnline.Me].url
133 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/[FreeCoursesOnline.Me].url
133 Bytes
36.2 - Agglomerative Clustering/[FreeCoursesOnline.Me].url
133 Bytes
36.3 - Proximity methods Advantages and Limitations/[FreeCoursesOnline.Me].url
133 Bytes
36.4 - Time and Space Complexity/[FreeCoursesOnline.Me].url
133 Bytes
36.5 - Limitations of Hierarchical Clustering/[FreeCoursesOnline.Me].url
133 Bytes
36.6 - Code sample/[FreeCoursesOnline.Me].url
133 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeCoursesOnline.Me].url
133 Bytes
37.1 - Density based clustering/[FreeCoursesOnline.Me].url
133 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeCoursesOnline.Me].url
133 Bytes
37.11 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
37.2 - MinPts and Eps Density/[FreeCoursesOnline.Me].url
133 Bytes
37.3 - Core, Border and Noise points/[FreeCoursesOnline.Me].url
133 Bytes
37.4 - Density edge and Density connected points/[FreeCoursesOnline.Me].url
133 Bytes
37.5 - DBSCAN Algorithm/[FreeCoursesOnline.Me].url
133 Bytes
37.6 - Hyper Parameters MinPts and Eps/[FreeCoursesOnline.Me].url
133 Bytes
37.7 - Advantages and Limitations of DBSCAN/[FreeCoursesOnline.Me].url
133 Bytes
37.8 - Time and Space Complexity/[FreeCoursesOnline.Me].url
133 Bytes
37.9 - Code samples/[FreeCoursesOnline.Me].url
133 Bytes
38.1 - Problem formulation Movie reviews/[FreeCoursesOnline.Me].url
133 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/[FreeCoursesOnline.Me].url
133 Bytes
38.11 - Cold Start problem/[FreeCoursesOnline.Me].url
133 Bytes
38.12 - Word vectors as MF/[FreeCoursesOnline.Me].url
133 Bytes
38.13 - Eigen-Faces/[FreeCoursesOnline.Me].url
133 Bytes
38.14 - Code example/[FreeCoursesOnline.Me].url
133 Bytes
38.15 - Assignment-11 Apply Truncated SVD/[FreeCoursesOnline.Me].url
133 Bytes
38.16 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
38.2 - Content based vs Collaborative Filtering/[FreeCoursesOnline.Me].url
133 Bytes
38.3 - Similarity based Algorithms/[FreeCoursesOnline.Me].url
133 Bytes
38.4 - Matrix Factorization PCA, SVD/[FreeCoursesOnline.Me].url
133 Bytes
38.5 - Matrix Factorization NMF/[FreeCoursesOnline.Me].url
133 Bytes
38.6 - Matrix Factorization for Collaborative filtering/[FreeCoursesOnline.Me].url
133 Bytes
38.7 - Matrix Factorization for feature engineering/[FreeCoursesOnline.Me].url
133 Bytes
38.8 - Clustering as MF/[FreeCoursesOnline.Me].url
133 Bytes
38.9 - Hyperparameter tuning/[FreeCoursesOnline.Me].url
133 Bytes
39.1 - Questions & Answers/[FreeCoursesOnline.Me].url
133 Bytes
4.1 - Introduction/[FreeCoursesOnline.Me].url
133 Bytes
4.10 - Debugging Python/[FreeCoursesOnline.Me].url
133 Bytes
4.2 - Types of functions/[FreeCoursesOnline.Me].url
133 Bytes
4.3 - Function arguments/[FreeCoursesOnline.Me].url
133 Bytes
4.4 - Recursive functions/[FreeCoursesOnline.Me].url
133 Bytes
4.5 - Lambda functions/[FreeCoursesOnline.Me].url
133 Bytes
4.6 - Modules/[FreeCoursesOnline.Me].url
133 Bytes
4.7 - Packages/[FreeCoursesOnline.Me].url
133 Bytes
4.8 - File Handling/[FreeCoursesOnline.Me].url
133 Bytes
4.9 - Exception Handling/[FreeCoursesOnline.Me].url
133 Bytes
40.1 - BusinessReal world problem/[FreeCoursesOnline.Me].url
133 Bytes
40.10 - Data Modeling Multi label Classification/[FreeCoursesOnline.Me].url
133 Bytes
40.11 - Data preparation/[FreeCoursesOnline.Me].url
133 Bytes
40.12 - Train-Test Split/[FreeCoursesOnline.Me].url
133 Bytes
40.13 - Featurization/[FreeCoursesOnline.Me].url
133 Bytes
40.14 - Logistic regression One VS Rest/[FreeCoursesOnline.Me].url
133 Bytes
40.15 - Sampling data and tags+Weighted models/[FreeCoursesOnline.Me].url
133 Bytes
40.16 - Logistic regression revisited/[FreeCoursesOnline.Me].url
133 Bytes
40.17 - Why not use advanced techniques/[FreeCoursesOnline.Me].url
133 Bytes
40.18 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
40.2 - Business objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
40.3 - Mapping to an ML problem Data overview/[FreeCoursesOnline.Me].url
133 Bytes
40.4 - Mapping to an ML problemML problem formulation/[FreeCoursesOnline.Me].url
133 Bytes
40.5 - Mapping to an ML problemPerformance metrics/[FreeCoursesOnline.Me].url
133 Bytes
40.6 - Hamming loss/[FreeCoursesOnline.Me].url
133 Bytes
40.7 - EDAData Loading/[FreeCoursesOnline.Me].url
133 Bytes
40.8 - EDAAnalysis of tags/[FreeCoursesOnline.Me].url
133 Bytes
40.9 - EDAData Preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
41.1 - BusinessReal world problem Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
41.10 - EDA Feature analysis/[FreeCoursesOnline.Me].url
133 Bytes
41.11 - EDA Data Visualization T-SNE/[FreeCoursesOnline.Me].url
133 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/[FreeCoursesOnline.Me].url
133 Bytes
41.13 - ML Models Loading Data/[FreeCoursesOnline.Me].url
133 Bytes
41.14 - ML Models Random Model/[FreeCoursesOnline.Me].url
133 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/[FreeCoursesOnline.Me].url
133 Bytes
41.16 - ML Models XGBoost/[FreeCoursesOnline.Me].url
133 Bytes
41.17 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
41.2 - Business objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
41.3 - Mapping to an ML problem Data overview/[FreeCoursesOnline.Me].url
133 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/[FreeCoursesOnline.Me].url
133 Bytes
41.5 - Mapping to an ML problem Train-test split/[FreeCoursesOnline.Me].url
133 Bytes
41.6 - EDA Basic Statistics/[FreeCoursesOnline.Me].url
133 Bytes
41.7 - EDA Basic Feature Extraction/[FreeCoursesOnline.Me].url
133 Bytes
41.8 - EDA Text Preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
41.9 - EDA Advanced Feature Extraction/[FreeCoursesOnline.Me].url
133 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/[FreeCoursesOnline.Me].url
133 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/[FreeCoursesOnline.Me].url
133 Bytes
42.11 - Stemming/[FreeCoursesOnline.Me].url
133 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/[FreeCoursesOnline.Me].url
133 Bytes
42.13 - Code for bag of words based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.14 - TF-IDF featurizing text based on word-importance/[FreeCoursesOnline.Me].url
133 Bytes
42.15 - Code for TF-IDF based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.16 - Code for IDF based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/[FreeCoursesOnline.Me].url
133 Bytes
42.18 - Code for Average Word2Vec product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.19 - TF-IDF weighted Word2Vec/[FreeCoursesOnline.Me].url
133 Bytes
42.2 - Plan of action/[FreeCoursesOnline.Me].url
133 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.21 - Weighted similarity using brand and color/[FreeCoursesOnline.Me].url
133 Bytes
42.22 - Code for weighted similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.23 - Building a real world solution/[FreeCoursesOnline.Me].url
133 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/[FreeCoursesOnline.Me].url
133 Bytes
42.25 - Using Keras + Tensorflow to extract features/[FreeCoursesOnline.Me].url
133 Bytes
42.26 - Visual similarity based product similarity/[FreeCoursesOnline.Me].url
133 Bytes
42.27 - Measuring goodness of our solution AB testing/[FreeCoursesOnline.Me].url
133 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/[FreeCoursesOnline.Me].url
133 Bytes
42.3 - Amazon product advertising API/[FreeCoursesOnline.Me].url
133 Bytes
42.4 - Data folders and paths/[FreeCoursesOnline.Me].url
133 Bytes
42.5 - Overview of the data and Terminology/[FreeCoursesOnline.Me].url
133 Bytes
42.6 - Data cleaning and understandingMissing data in various features/[FreeCoursesOnline.Me].url
133 Bytes
42.7 - Understand duplicate rows/[FreeCoursesOnline.Me].url
133 Bytes
42.8 - Remove duplicates Part 1/[FreeCoursesOnline.Me].url
133 Bytes
42.9 - Remove duplicates Part 2/[FreeCoursesOnline.Me].url
133 Bytes
43.1 - Businessreal world problem Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
43.10 - ML models – using byte files only Random Model/[FreeCoursesOnline.Me].url
133 Bytes
43.11 - k-NN/[FreeCoursesOnline.Me].url
133 Bytes
43.12 - Logistic regression/[FreeCoursesOnline.Me].url
133 Bytes
43.13 - Random Forest and Xgboost/[FreeCoursesOnline.Me].url
133 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/[FreeCoursesOnline.Me].url
133 Bytes
43.15 - File-size feature/[FreeCoursesOnline.Me].url
133 Bytes
43.16 - Univariate analysis/[FreeCoursesOnline.Me].url
133 Bytes
43.17 - t-SNE analysis/[FreeCoursesOnline.Me].url
133 Bytes
43.18 - ML models on ASM file features/[FreeCoursesOnline.Me].url
133 Bytes
43.19 - Models on all features t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
43.2 - Businessreal world problem Objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
43.20 - Models on all features RandomForest and Xgboost/[FreeCoursesOnline.Me].url
133 Bytes
43.21 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
43.3 - Machine Learning problem mapping Data overview/[FreeCoursesOnline.Me].url
133 Bytes
43.4 - Machine Learning problem mapping ML problem/[FreeCoursesOnline.Me].url
133 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/[FreeCoursesOnline.Me].url
133 Bytes
43.6 - Exploratory Data Analysis Class distribution/[FreeCoursesOnline.Me].url
133 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/[FreeCoursesOnline.Me].url
133 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/[FreeCoursesOnline.Me].url
133 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/[FreeCoursesOnline.Me].url
133 Bytes
44.1 - BusinessReal world problemProblem definition/[FreeCoursesOnline.Me].url
133 Bytes
44.10 - Exploratory Data AnalysisCold start problem/[FreeCoursesOnline.Me].url
133 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/[FreeCoursesOnline.Me].url
133 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/[FreeCoursesOnline.Me].url
133 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/[FreeCoursesOnline.Me].url
133 Bytes
44.14 - ML ModelsSurprise library/[FreeCoursesOnline.Me].url
133 Bytes
44.15 - Overview of the modelling strategy/[FreeCoursesOnline.Me].url
133 Bytes
44.16 - Data Sampling/[FreeCoursesOnline.Me].url
133 Bytes
44.17 - Google drive with intermediate files/[FreeCoursesOnline.Me].url
133 Bytes
44.18 - Featurizations for regression/[FreeCoursesOnline.Me].url
133 Bytes
44.19 - Data transformation for Surprise/[FreeCoursesOnline.Me].url
133 Bytes
44.2 - Objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
44.20 - Xgboost with 13 features/[FreeCoursesOnline.Me].url
133 Bytes
44.21 - Surprise Baseline model/[FreeCoursesOnline.Me].url
133 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/[FreeCoursesOnline.Me].url
133 Bytes
44.23 - Surprise KNN predictors/[FreeCoursesOnline.Me].url
133 Bytes
44.24 - Matrix Factorization models using Surprise/[FreeCoursesOnline.Me].url
133 Bytes
44.25 - SVD ++ with implicit feedback/[FreeCoursesOnline.Me].url
133 Bytes
44.26 - Final models with all features and predictors/[FreeCoursesOnline.Me].url
133 Bytes
44.27 - Comparison between various models/[FreeCoursesOnline.Me].url
133 Bytes
44.28 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
44.3 - Mapping to an ML problemData overview/[FreeCoursesOnline.Me].url
133 Bytes
44.4 - Mapping to an ML problemML problem formulation/[FreeCoursesOnline.Me].url
133 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/[FreeCoursesOnline.Me].url
133 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/[FreeCoursesOnline.Me].url
133 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/[FreeCoursesOnline.Me].url
133 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/[FreeCoursesOnline.Me].url
133 Bytes
45.1 - BusinessReal world problem Overview/[FreeCoursesOnline.Me].url
133 Bytes
45.10 - Univariate AnalysisVariation Feature/[FreeCoursesOnline.Me].url
133 Bytes
45.11 - Univariate AnalysisText feature/[FreeCoursesOnline.Me].url
133 Bytes
45.12 - Machine Learning ModelsData preparation/[FreeCoursesOnline.Me].url
133 Bytes
45.13 - Baseline Model Naive Bayes/[FreeCoursesOnline.Me].url
133 Bytes
45.14 - K-Nearest Neighbors Classification/[FreeCoursesOnline.Me].url
133 Bytes
45.15 - Logistic Regression with class balancing/[FreeCoursesOnline.Me].url
133 Bytes
45.16 - Logistic Regression without class balancing/[FreeCoursesOnline.Me].url
133 Bytes
45.17 - Linear-SVM/[FreeCoursesOnline.Me].url
133 Bytes
45.18 - Random-Forest with one-hot encoded features/[FreeCoursesOnline.Me].url
133 Bytes
45.19 - Random-Forest with response-coded features/[FreeCoursesOnline.Me].url
133 Bytes
45.2 - Business objectives and constraints/[FreeCoursesOnline.Me].url
133 Bytes
45.20 - Stacking Classifier/[FreeCoursesOnline.Me].url
133 Bytes
45.21 - Majority Voting classifier/[FreeCoursesOnline.Me].url
133 Bytes
45.22 - Assignments/[FreeCoursesOnline.Me].url
133 Bytes
45.3 - ML problem formulation Data/[FreeCoursesOnline.Me].url
133 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/[FreeCoursesOnline.Me].url
133 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/[FreeCoursesOnline.Me].url
133 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/[FreeCoursesOnline.Me].url
133 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/[FreeCoursesOnline.Me].url
133 Bytes
45.8 - Exploratory Data Analysis “Random” Model/[FreeCoursesOnline.Me].url
133 Bytes
45.9 - Univariate AnalysisGene feature/[FreeCoursesOnline.Me].url
133 Bytes
46.1 - BusinessReal world problem Overview/[FreeCoursesOnline.Me].url
133 Bytes
46.10 - Data Cleaning Speed/[FreeCoursesOnline.Me].url
133 Bytes
46.11 - Data Cleaning Distance/[FreeCoursesOnline.Me].url
133 Bytes
46.12 - Data Cleaning Fare/[FreeCoursesOnline.Me].url
133 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/[FreeCoursesOnline.Me].url
133 Bytes
46.14 - Data PreparationClusteringSegmentation/[FreeCoursesOnline.Me].url
133 Bytes
46.15 - Data PreparationTime binning/[FreeCoursesOnline.Me].url
133 Bytes
46.16 - Data PreparationSmoothing time-series data/[FreeCoursesOnline.Me].url
133 Bytes
46.17 - Data PreparationSmoothing time-series data cont/[FreeCoursesOnline.Me].url
133 Bytes
46.18 - Data Preparation Time series and Fourier transforms/[FreeCoursesOnline.Me].url
133 Bytes
46.19 - Ratios and previous-time-bin values/[FreeCoursesOnline.Me].url
133 Bytes
46.2 - Objectives and Constraints/[FreeCoursesOnline.Me].url
133 Bytes
46.20 - Simple moving average/[FreeCoursesOnline.Me].url
133 Bytes
46.21 - Weighted Moving average/[FreeCoursesOnline.Me].url
133 Bytes
46.22 - Exponential weighted moving average/[FreeCoursesOnline.Me].url
133 Bytes
46.23 - Results/[FreeCoursesOnline.Me].url
133 Bytes
46.24 - Regression models Train-Test split & Features/[FreeCoursesOnline.Me].url
133 Bytes
46.25 - Linear regression/[FreeCoursesOnline.Me].url
133 Bytes
46.26 - Random Forest regression/[FreeCoursesOnline.Me].url
133 Bytes
46.27 - Xgboost Regression/[FreeCoursesOnline.Me].url
133 Bytes
46.28 - Model comparison/[FreeCoursesOnline.Me].url
133 Bytes
46.29 - Assignment/[FreeCoursesOnline.Me].url
133 Bytes
46.3 - Mapping to ML problem Data/[FreeCoursesOnline.Me].url
133 Bytes
46.4 - Mapping to ML problem dask dataframes/[FreeCoursesOnline.Me].url
133 Bytes
46.5 - Mapping to ML problem FieldsFeatures/[FreeCoursesOnline.Me].url
133 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/[FreeCoursesOnline.Me].url
133 Bytes
46.7 - Mapping to ML problem Performance metrics/[FreeCoursesOnline.Me].url
133 Bytes
46.8 - Data Cleaning Latitude and Longitude data/[FreeCoursesOnline.Me].url
133 Bytes
46.9 - Data Cleaning Trip Duration/[FreeCoursesOnline.Me].url
133 Bytes
47.1 - History of Neural networks and Deep Learning/[FreeCoursesOnline.Me].url
133 Bytes
47.10 - Backpropagation/[FreeCoursesOnline.Me].url
133 Bytes
47.11 - Activation functions/[FreeCoursesOnline.Me].url
133 Bytes
47.12 - Vanishing Gradient problem/[FreeCoursesOnline.Me].url
133 Bytes
47.13 - Bias-Variance tradeoff/[FreeCoursesOnline.Me].url
133 Bytes
47.14 - Decision surfaces Playground/[FreeCoursesOnline.Me].url
133 Bytes
47.2 - How Biological Neurons work/[FreeCoursesOnline.Me].url
133 Bytes
47.3 - Growth of biological neural networks/[FreeCoursesOnline.Me].url
133 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/[FreeCoursesOnline.Me].url
133 Bytes
47.5 - Multi-Layered Perceptron (MLP)/[FreeCoursesOnline.Me].url
133 Bytes
47.6 - Notation/[FreeCoursesOnline.Me].url
133 Bytes
47.7 - Training a single-neuron model/[FreeCoursesOnline.Me].url
133 Bytes
47.8 - Training an MLP Chain Rule/[FreeCoursesOnline.Me].url
133 Bytes
47.9 - Training an MLPMemoization/[FreeCoursesOnline.Me].url
133 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/[FreeCoursesOnline.Me].url
133 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/[FreeCoursesOnline.Me].url
133 Bytes
48.11 - OptimizersAdaGrad/[FreeCoursesOnline.Me].url
133 Bytes
48.12 - Optimizers Adadelta andRMSProp/[FreeCoursesOnline.Me].url
133 Bytes
48.13 - Adam/[FreeCoursesOnline.Me].url
133 Bytes
48.14 - Which algorithm to choose when/[FreeCoursesOnline.Me].url
133 Bytes
48.15 - Gradient Checking and clipping/[FreeCoursesOnline.Me].url
133 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/[FreeCoursesOnline.Me].url
133 Bytes
48.17 - How to train a Deep MLP/[FreeCoursesOnline.Me].url
133 Bytes
48.18 - Auto Encoders/[FreeCoursesOnline.Me].url
133 Bytes
48.19 - Word2Vec CBOW/[FreeCoursesOnline.Me].url
133 Bytes
48.2 - Dropout layers & Regularization/[FreeCoursesOnline.Me].url
133 Bytes
48.20 - Word2Vec Skip-gram/[FreeCoursesOnline.Me].url
133 Bytes
48.21 - Word2Vec Algorithmic Optimizations/[FreeCoursesOnline.Me].url
133 Bytes
48.3 - Rectified Linear Units (ReLU)/[FreeCoursesOnline.Me].url
133 Bytes
48.4 - Weight initialization/[FreeCoursesOnline.Me].url
133 Bytes
48.5 - Batch Normalization/[FreeCoursesOnline.Me].url
133 Bytes
48.6 - OptimizersHill-descent analogy in 2D/[FreeCoursesOnline.Me].url
133 Bytes
48.7 - OptimizersHill descent in 3D and contours/[FreeCoursesOnline.Me].url
133 Bytes
48.8 - SGD Recap/[FreeCoursesOnline.Me].url
133 Bytes
48.9 - Batch SGD with momentum/[FreeCoursesOnline.Me].url
133 Bytes
49.1 - Tensorflow and Keras overview/[FreeCoursesOnline.Me].url
133 Bytes
49.10 - Model 3 Batch Normalization/[FreeCoursesOnline.Me].url
133 Bytes
49.11 - Model 4 Dropout/[FreeCoursesOnline.Me].url
133 Bytes
49.12 - MNIST classification in Keras/[FreeCoursesOnline.Me].url
133 Bytes
49.13 - Hyperparameter tuning in Keras/[FreeCoursesOnline.Me].url
133 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
49.2 - GPU vs CPU for Deep Learning/[FreeCoursesOnline.Me].url
133 Bytes
49.3 - Google Colaboratory/[FreeCoursesOnline.Me].url
133 Bytes
49.4 - Install TensorFlow/[FreeCoursesOnline.Me].url
133 Bytes
49.5 - Online documentation and tutorials/[FreeCoursesOnline.Me].url
133 Bytes
49.6 - Softmax Classifier on MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
49.7 - MLP Initialization/[FreeCoursesOnline.Me].url
133 Bytes
49.8 - Model 1 Sigmoid activation/[FreeCoursesOnline.Me].url
133 Bytes
49.9 - Model 2 ReLU activation/[FreeCoursesOnline.Me].url
133 Bytes
5.1 - Numpy Introduction/[FreeCoursesOnline.Me].url
133 Bytes
5.2 - Numerical operations on Numpy/[FreeCoursesOnline.Me].url
133 Bytes
50.1 - Biological inspiration Visual Cortex/[FreeCoursesOnline.Me].url
133 Bytes
50.10 - Data Augmentation/[FreeCoursesOnline.Me].url
133 Bytes
50.11 - Convolution Layers in Keras/[FreeCoursesOnline.Me].url
133 Bytes
50.12 - AlexNet/[FreeCoursesOnline.Me].url
133 Bytes
50.13 - VGGNet/[FreeCoursesOnline.Me].url
133 Bytes
50.14 - Residual Network/[FreeCoursesOnline.Me].url
133 Bytes
50.15 - Inception Network/[FreeCoursesOnline.Me].url
133 Bytes
50.16 - What is Transfer learning/[FreeCoursesOnline.Me].url
133 Bytes
50.17 - Code example Cats vs Dogs/[FreeCoursesOnline.Me].url
133 Bytes
50.18 - Code Example MNIST dataset/[FreeCoursesOnline.Me].url
133 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/[FreeCoursesOnline.Me].url
133 Bytes
50.2 - ConvolutionEdge Detection on images/[FreeCoursesOnline.Me].url
133 Bytes
50.3 - ConvolutionPadding and strides/[FreeCoursesOnline.Me].url
133 Bytes
50.4 - Convolution over RGB images/[FreeCoursesOnline.Me].url
133 Bytes
50.5 - Convolutional layer/[FreeCoursesOnline.Me].url
133 Bytes
50.6 - Max-pooling/[FreeCoursesOnline.Me].url
133 Bytes
50.7 - CNN Training Optimization/[FreeCoursesOnline.Me].url
133 Bytes
50.8 - Example CNN LeNet [1998]/[FreeCoursesOnline.Me].url
133 Bytes
50.9 - ImageNet dataset/[FreeCoursesOnline.Me].url
133 Bytes
51.1 - Why RNNs/[FreeCoursesOnline.Me].url
133 Bytes
51.10 - Code example IMDB Sentiment classification/[FreeCoursesOnline.Me].url
133 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/[FreeCoursesOnline.Me].url
133 Bytes
51.2 - Recurrent Neural Network/[FreeCoursesOnline.Me].url
133 Bytes
51.3 - Training RNNs Backprop/[FreeCoursesOnline.Me].url
133 Bytes
51.4 - Types of RNNs/[FreeCoursesOnline.Me].url
133 Bytes
51.5 - Need for LSTMGRU/[FreeCoursesOnline.Me].url
133 Bytes
51.6 - LSTM/[FreeCoursesOnline.Me].url
133 Bytes
51.7 - GRUs/[FreeCoursesOnline.Me].url
133 Bytes
51.8 - Deep RNN/[FreeCoursesOnline.Me].url
133 Bytes
51.9 - Bidirectional RNN/[FreeCoursesOnline.Me].url
133 Bytes
52.1 - Questions and Answers/[FreeCoursesOnline.Me].url
133 Bytes
53.1 - Self Driving Car Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
53.10 - NVIDIA’s end to end CNN model/[FreeCoursesOnline.Me].url
133 Bytes
53.11 - Train the model/[FreeCoursesOnline.Me].url
133 Bytes
53.12 - Test and visualize the output/[FreeCoursesOnline.Me].url
133 Bytes
53.13 - Extensions/[FreeCoursesOnline.Me].url
133 Bytes
53.14 - Assignment/[FreeCoursesOnline.Me].url
133 Bytes
53.2 - Datasets/[FreeCoursesOnline.Me].url
133 Bytes
53.2 - Datasets#/[FreeCoursesOnline.Me].url
133 Bytes
53.3 - Data understanding & Analysis Files and folders/[FreeCoursesOnline.Me].url
133 Bytes
53.4 - Dash-cam images and steering angles/[FreeCoursesOnline.Me].url
133 Bytes
53.5 - Split the dataset Train vs Test/[FreeCoursesOnline.Me].url
133 Bytes
53.6 - EDA Steering angles/[FreeCoursesOnline.Me].url
133 Bytes
53.7 - Mean Baseline model simple/[FreeCoursesOnline.Me].url
133 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/[FreeCoursesOnline.Me].url
133 Bytes
53.9 - Batch load the dataset/[FreeCoursesOnline.Me].url
133 Bytes
54.1 - Real-world problem/[FreeCoursesOnline.Me].url
133 Bytes
54.10 - MIDI music generation/[FreeCoursesOnline.Me].url
133 Bytes
54.11 - Survey blog/[FreeCoursesOnline.Me].url
133 Bytes
54.2 - Music representation/[FreeCoursesOnline.Me].url
133 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/[FreeCoursesOnline.Me].url
133 Bytes
54.4 - Char-RNN with abc-notation Data preparation/[FreeCoursesOnline.Me].url
133 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/[FreeCoursesOnline.Me].url
133 Bytes
54.6 - Char-RNN with abc-notation State full RNN/[FreeCoursesOnline.Me].url
133 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/[FreeCoursesOnline.Me].url
133 Bytes
54.8 - Char-RNN with abc-notation Music generation/[FreeCoursesOnline.Me].url
133 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/[FreeCoursesOnline.Me].url
133 Bytes
55.1 - Human Activity Recognition Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
55.2 - Dataset understanding/[FreeCoursesOnline.Me].url
133 Bytes
55.3 - Data cleaning & preprocessing/[FreeCoursesOnline.Me].url
133 Bytes
55.4 - EDAUnivariate analysis/[FreeCoursesOnline.Me].url
133 Bytes
55.5 - EDAData visualization using t-SNE/[FreeCoursesOnline.Me].url
133 Bytes
55.6 - Classical ML models/[FreeCoursesOnline.Me].url
133 Bytes
55.7 - Deep-learning Model/[FreeCoursesOnline.Me].url
133 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/[FreeCoursesOnline.Me].url
133 Bytes
56.1 - Problem definition/[FreeCoursesOnline.Me].url
133 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/[FreeCoursesOnline.Me].url
133 Bytes
56.11 - PageRank/[FreeCoursesOnline.Me].url
133 Bytes
56.12 - Shortest Path/[FreeCoursesOnline.Me].url
133 Bytes
56.13 - Connected-components/[FreeCoursesOnline.Me].url
133 Bytes
56.14 - Adar Index/[FreeCoursesOnline.Me].url
133 Bytes
56.15 - Kartz Centrality/[FreeCoursesOnline.Me].url
133 Bytes
56.16 - HITS Score/[FreeCoursesOnline.Me].url
133 Bytes
56.17 - SVD/[FreeCoursesOnline.Me].url
133 Bytes
56.18 - Weight features/[FreeCoursesOnline.Me].url
133 Bytes
56.19 - Modeling/[FreeCoursesOnline.Me].url
133 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/[FreeCoursesOnline.Me].url
133 Bytes
56.3 - Data format & Limitations/[FreeCoursesOnline.Me].url
133 Bytes
56.4 - Mapping to a supervised classification problem/[FreeCoursesOnline.Me].url
133 Bytes
56.5 - Business constraints & Metrics/[FreeCoursesOnline.Me].url
133 Bytes
56.6 - EDABasic Stats/[FreeCoursesOnline.Me].url
133 Bytes
56.7 - EDAFollower and following stats/[FreeCoursesOnline.Me].url
133 Bytes
56.8 - EDABinary Classification Task/[FreeCoursesOnline.Me].url
133 Bytes
56.9 - EDATrain and test split/[FreeCoursesOnline.Me].url
133 Bytes
57.1 - Introduction to Databases/[FreeCoursesOnline.Me].url
133 Bytes
57.10 - ORDER BY/[FreeCoursesOnline.Me].url
133 Bytes
57.11 - DISTINCT/[FreeCoursesOnline.Me].url
133 Bytes
57.12 - WHERE, Comparison operators, NULL/[FreeCoursesOnline.Me].url
133 Bytes
57.13 - Logical Operators/[FreeCoursesOnline.Me].url
133 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/[FreeCoursesOnline.Me].url
133 Bytes
57.15 - GROUP BY/[FreeCoursesOnline.Me].url
133 Bytes
57.16 - HAVING/[FreeCoursesOnline.Me].url
133 Bytes
57.17 - Order of keywords#/[FreeCoursesOnline.Me].url
133 Bytes
57.18 - Join and Natural Join/[FreeCoursesOnline.Me].url
133 Bytes
57.19 - Inner, Left, Right and Outer joins/[FreeCoursesOnline.Me].url
133 Bytes
57.2 - Why SQL/[FreeCoursesOnline.Me].url
133 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/[FreeCoursesOnline.Me].url
133 Bytes
57.21 - DMLINSERT/[FreeCoursesOnline.Me].url
133 Bytes
57.22 - DMLUPDATE , DELETE/[FreeCoursesOnline.Me].url
133 Bytes
57.23 - DDLCREATE TABLE/[FreeCoursesOnline.Me].url
133 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/[FreeCoursesOnline.Me].url
133 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/[FreeCoursesOnline.Me].url
133 Bytes
57.26 - Data Control Language GRANT, REVOKE/[FreeCoursesOnline.Me].url
133 Bytes
57.27 - Learning resources/[FreeCoursesOnline.Me].url
133 Bytes
57.3 - Execution of an SQL statement/[FreeCoursesOnline.Me].url
133 Bytes
57.4 - IMDB dataset/[FreeCoursesOnline.Me].url
133 Bytes
57.5 - Installing MySQL/[FreeCoursesOnline.Me].url
133 Bytes
57.6 - Load IMDB data/[FreeCoursesOnline.Me].url
133 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/[FreeCoursesOnline.Me].url
133 Bytes
57.8 - SELECT/[FreeCoursesOnline.Me].url
133 Bytes
57.9 - LIMIT, OFFSET/[FreeCoursesOnline.Me].url
133 Bytes
58.1 - AD-Click Predicition/[FreeCoursesOnline.Me].url
133 Bytes
59.1 - Revision Questions/[FreeCoursesOnline.Me].url
133 Bytes
59.2 - Questions/[FreeCoursesOnline.Me].url
133 Bytes
59.3 - External resources for Interview Questions/[FreeCoursesOnline.Me].url
133 Bytes
6.1 - Getting started with Matplotlib/[FreeCoursesOnline.Me].url
133 Bytes
7.1 - Getting started with pandas/[FreeCoursesOnline.Me].url
133 Bytes
7.2 - Data Frame Basics/[FreeCoursesOnline.Me].url
133 Bytes
7.3 - Key Operations on Data Frames/[FreeCoursesOnline.Me].url
133 Bytes
8.1 - Space and Time Complexity Find largest number in a list/[FreeCoursesOnline.Me].url
133 Bytes
8.2 - Binary search/[FreeCoursesOnline.Me].url
133 Bytes
8.3 - Find elements common in two lists/[FreeCoursesOnline.Me].url
133 Bytes
8.4 - Find elements common in two lists using a HashtableDict/[FreeCoursesOnline.Me].url
133 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/[FreeCoursesOnline.Me].url
133 Bytes
9.10 - Percentiles and Quantiles/[FreeCoursesOnline.Me].url
133 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/[FreeCoursesOnline.Me].url
133 Bytes
9.12 - Box-plot with Whiskers/[FreeCoursesOnline.Me].url
133 Bytes
9.13 - Violin Plots/[FreeCoursesOnline.Me].url
133 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/[FreeCoursesOnline.Me].url
133 Bytes
9.15 - Multivariate Probability Density, Contour Plot/[FreeCoursesOnline.Me].url
133 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/[FreeCoursesOnline.Me].url
133 Bytes
9.2 - 3D scatter plot/[FreeCoursesOnline.Me].url
133 Bytes
9.3 - Pair plots/[FreeCoursesOnline.Me].url
133 Bytes
9.4 - Limitations of Pair Plots/[FreeCoursesOnline.Me].url
133 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/[FreeCoursesOnline.Me].url
133 Bytes
9.6 - Univariate Analysis using PDF/[FreeCoursesOnline.Me].url
133 Bytes
9.7 - CDF(Cumulative Distribution Function)/[FreeCoursesOnline.Me].url
133 Bytes
9.8 - Mean, Variance and Standard Deviation/[FreeCoursesOnline.Me].url
133 Bytes
9.9 - Median/[FreeCoursesOnline.Me].url
133 Bytes
[FreeCoursesOnline.Me].url
133 Bytes
1.1 - How to Learn from Appliedaicourse/[FreeTutorials.Eu].url
129 Bytes
1.2 - How the Job Guarantee program works/[FreeTutorials.Eu].url
129 Bytes
10.1 - Why learn it/[FreeTutorials.Eu].url
129 Bytes
10.10 - Hyper Cube,Hyper Cuboid/[FreeTutorials.Eu].url
129 Bytes
10.11 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/[FreeTutorials.Eu].url
129 Bytes
10.3 - Dot Product and Angle between 2 Vectors/[FreeTutorials.Eu].url
129 Bytes
10.4 - Projection and Unit Vector/[FreeTutorials.Eu].url
129 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/[FreeTutorials.Eu].url
129 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/[FreeTutorials.Eu].url
129 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/[FreeTutorials.Eu].url
129 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/[FreeTutorials.Eu].url
129 Bytes
10.9 - Square ,Rectangle/[FreeTutorials.Eu].url
129 Bytes
11.1 - Introduction to Probability and Statistics/[FreeTutorials.Eu].url
129 Bytes
11.10 - How distributions are used/[FreeTutorials.Eu].url
129 Bytes
11.11 - Chebyshev’s inequality/[FreeTutorials.Eu].url
129 Bytes
11.12 - Discrete and Continuous Uniform distributions/[FreeTutorials.Eu].url
129 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/[FreeTutorials.Eu].url
129 Bytes
11.14 - Bernoulli and Binomial Distribution/[FreeTutorials.Eu].url
129 Bytes
11.15 - Log Normal Distribution/[FreeTutorials.Eu].url
129 Bytes
11.16 - Power law distribution/[FreeTutorials.Eu].url
129 Bytes
11.17 - Box cox transform/[FreeTutorials.Eu].url
129 Bytes
11.18 - Applications of non-gaussian distributions/[FreeTutorials.Eu].url
129 Bytes
11.19 - Co-variance/[FreeTutorials.Eu].url
129 Bytes
11.2 - Population and Sample/[FreeTutorials.Eu].url
129 Bytes
11.20 - Pearson Correlation Coefficient/[FreeTutorials.Eu].url
129 Bytes
11.21 - Spearman Rank Correlation Coefficient/[FreeTutorials.Eu].url
129 Bytes
11.22 - Correlation vs Causation/[FreeTutorials.Eu].url
129 Bytes
11.23 - How to use correlations/[FreeTutorials.Eu].url
129 Bytes
11.24 - Confidence interval (C.I) Introduction/[FreeTutorials.Eu].url
129 Bytes
11.25 - Computing confidence interval given the underlying distribution/[FreeTutorials.Eu].url
129 Bytes
11.26 - C.I for mean of a normal random variable/[FreeTutorials.Eu].url
129 Bytes
11.27 - Confidence interval using bootstrapping/[FreeTutorials.Eu].url
129 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/[FreeTutorials.Eu].url
129 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/[FreeTutorials.Eu].url
129 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/[FreeTutorials.Eu].url
129 Bytes
11.30 - Resampling and permutation test/[FreeTutorials.Eu].url
129 Bytes
11.31 - K-S Test for similarity of two distributions/[FreeTutorials.Eu].url
129 Bytes
11.32 - Code Snippet K-S Test/[FreeTutorials.Eu].url
129 Bytes
11.33 - Hypothesis testing another example/[FreeTutorials.Eu].url
129 Bytes
11.34 - Resampling and Permutation test another example/[FreeTutorials.Eu].url
129 Bytes
11.35 - How to use hypothesis testing/[FreeTutorials.Eu].url
129 Bytes
11.36 - Proportional Sampling/[FreeTutorials.Eu].url
129 Bytes
11.37 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/[FreeTutorials.Eu].url
129 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/[FreeTutorials.Eu].url
129 Bytes
11.6 - Standard normal variate (Z) and standardization/[FreeTutorials.Eu].url
129 Bytes
11.7 - Kernel density estimation/[FreeTutorials.Eu].url
129 Bytes
11.8 - Sampling distribution & Central Limit theorem/[FreeTutorials.Eu].url
129 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/[FreeTutorials.Eu].url
129 Bytes
12.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
13.1 - What is Dimensionality reduction/[FreeTutorials.Eu].url
129 Bytes
13.10 - Code to Load MNIST Data Set/[FreeTutorials.Eu].url
129 Bytes
13.2 - Row Vector and Column Vector/[FreeTutorials.Eu].url
129 Bytes
13.3 - How to represent a data set/[FreeTutorials.Eu].url
129 Bytes
13.4 - How to represent a dataset as a Matrix/[FreeTutorials.Eu].url
129 Bytes
13.5 - Data Preprocessing Feature Normalisation/[FreeTutorials.Eu].url
129 Bytes
13.6 - Mean of a data matrix/[FreeTutorials.Eu].url
129 Bytes
13.7 - Data Preprocessing Column Standardization/[FreeTutorials.Eu].url
129 Bytes
13.8 - Co-variance of a Data Matrix/[FreeTutorials.Eu].url
129 Bytes
13.9 - MNIST dataset (784 dimensional)/[FreeTutorials.Eu].url
129 Bytes
14.1 - Why learn PCA/[FreeTutorials.Eu].url
129 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/[FreeTutorials.Eu].url
129 Bytes
14.2 - Geometric intuition of PCA/[FreeTutorials.Eu].url
129 Bytes
14.3 - Mathematical objective function of PCA/[FreeTutorials.Eu].url
129 Bytes
14.4 - Alternative formulation of PCA Distance minimization/[FreeTutorials.Eu].url
129 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/[FreeTutorials.Eu].url
129 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/[FreeTutorials.Eu].url
129 Bytes
14.7 - Visualize MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
14.8 - Limitations of PCA/[FreeTutorials.Eu].url
129 Bytes
14.9 - PCA Code example/[FreeTutorials.Eu].url
129 Bytes
15.1 - What is t-SNE/[FreeTutorials.Eu].url
129 Bytes
15.2 - Neighborhood of a point, Embedding/[FreeTutorials.Eu].url
129 Bytes
15.3 - Geometric intuition of t-SNE/[FreeTutorials.Eu].url
129 Bytes
15.4 - Crowding Problem/[FreeTutorials.Eu].url
129 Bytes
15.5 - How to apply t-SNE and interpret its output/[FreeTutorials.Eu].url
129 Bytes
15.6 - t-SNE on MNIST/[FreeTutorials.Eu].url
129 Bytes
15.7 - Code example of t-SNE/[FreeTutorials.Eu].url
129 Bytes
15.8 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
16.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/[FreeTutorials.Eu].url
129 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/[FreeTutorials.Eu].url
129 Bytes
17.11 - Bag of Words( Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.12 - Text Preprocessing( Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.14 - TF-IDF (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.15 - Word2Vec (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/[FreeTutorials.Eu].url
129 Bytes
17.17 - Assignment-2 Apply t-SNE/[FreeTutorials.Eu].url
129 Bytes
17.2 - Data Cleaning Deduplication/[FreeTutorials.Eu].url
129 Bytes
17.3 - Why convert text to a vector/[FreeTutorials.Eu].url
129 Bytes
17.4 - Bag of Words (BoW)/[FreeTutorials.Eu].url
129 Bytes
17.5 - Text Preprocessing Stemming/[FreeTutorials.Eu].url
129 Bytes
17.6 - uni-gram, bi-gram, n-grams/[FreeTutorials.Eu].url
129 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/[FreeTutorials.Eu].url
129 Bytes
17.8 - Why use log in IDF/[FreeTutorials.Eu].url
129 Bytes
17.9 - Word2Vec/[FreeTutorials.Eu].url
129 Bytes
18.1 - How “Classification” works/[FreeTutorials.Eu].url
129 Bytes
18.10 - KNN Limitations/[FreeTutorials.Eu].url
129 Bytes
18.11 - Decision surface for K-NN as K changes/[FreeTutorials.Eu].url
129 Bytes
18.12 - Overfitting and Underfitting/[FreeTutorials.Eu].url
129 Bytes
18.13 - Need for Cross validation/[FreeTutorials.Eu].url
129 Bytes
18.14 - K-fold cross validation/[FreeTutorials.Eu].url
129 Bytes
18.15 - Visualizing train, validation and test datasets/[FreeTutorials.Eu].url
129 Bytes
18.16 - How to determine overfitting and underfitting/[FreeTutorials.Eu].url
129 Bytes
18.17 - Time based splitting/[FreeTutorials.Eu].url
129 Bytes
18.18 - k-NN for regression/[FreeTutorials.Eu].url
129 Bytes
18.19 - Weighted k-NN/[FreeTutorials.Eu].url
129 Bytes
18.2 - Data matrix notation/[FreeTutorials.Eu].url
129 Bytes
18.20 - Voronoi diagram/[FreeTutorials.Eu].url
129 Bytes
18.21 - Binary search tree/[FreeTutorials.Eu].url
129 Bytes
18.22 - How to build a kd-tree/[FreeTutorials.Eu].url
129 Bytes
18.23 - Find nearest neighbours using kd-tree/[FreeTutorials.Eu].url
129 Bytes
18.24 - Limitations of Kd tree/[FreeTutorials.Eu].url
129 Bytes
18.25 - Extensions/[FreeTutorials.Eu].url
129 Bytes
18.26 - Hashing vs LSH/[FreeTutorials.Eu].url
129 Bytes
18.27 - LSH for cosine similarity/[FreeTutorials.Eu].url
129 Bytes
18.28 - LSH for euclidean distance/[FreeTutorials.Eu].url
129 Bytes
18.29 - Probabilistic class label/[FreeTutorials.Eu].url
129 Bytes
18.3 - Classification vs Regression (examples)/[FreeTutorials.Eu].url
129 Bytes
18.30 - Code SampleDecision boundary/[FreeTutorials.Eu].url
129 Bytes
18.31 - Code SampleCross Validation/[FreeTutorials.Eu].url
129 Bytes
18.32 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/[FreeTutorials.Eu].url
129 Bytes
18.5 - Failure cases of KNN/[FreeTutorials.Eu].url
129 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/[FreeTutorials.Eu].url
129 Bytes
18.7 - Cosine Distance & Cosine Similarity/[FreeTutorials.Eu].url
129 Bytes
18.8 - How to measure the effectiveness of k-NN/[FreeTutorials.Eu].url
129 Bytes
18.9 - TestEvaluation time and space complexity/[FreeTutorials.Eu].url
129 Bytes
19.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
2.1 - Python, Anaconda and relevant packages installations/[FreeTutorials.Eu].url
129 Bytes
2.10 - Control flow for loop/[FreeTutorials.Eu].url
129 Bytes
2.11 - Control flow break and continue/[FreeTutorials.Eu].url
129 Bytes
2.2 - Why learn Python/[FreeTutorials.Eu].url
129 Bytes
2.3 - Keywords and identifiers/[FreeTutorials.Eu].url
129 Bytes
2.4 - comments, indentation and statements/[FreeTutorials.Eu].url
129 Bytes
2.5 - Variables and data types in Python/[FreeTutorials.Eu].url
129 Bytes
2.6 - Standard Input and Output/[FreeTutorials.Eu].url
129 Bytes
2.7 - Operators/[FreeTutorials.Eu].url
129 Bytes
2.8 - Control flow if else/[FreeTutorials.Eu].url
129 Bytes
2.9 - Control flow while loop/[FreeTutorials.Eu].url
129 Bytes
20.1 - Introduction/[FreeTutorials.Eu].url
129 Bytes
20.10 - Local reachability-density(A)/[FreeTutorials.Eu].url
129 Bytes
20.11 - Local outlier Factor(A)/[FreeTutorials.Eu].url
129 Bytes
20.12 - Impact of Scale & Column standardization/[FreeTutorials.Eu].url
129 Bytes
20.13 - Interpretability/[FreeTutorials.Eu].url
129 Bytes
20.14 - Feature Importance and Forward Feature selection/[FreeTutorials.Eu].url
129 Bytes
20.15 - Handling categorical and numerical features/[FreeTutorials.Eu].url
129 Bytes
20.16 - Handling missing values by imputation/[FreeTutorials.Eu].url
129 Bytes
20.17 - curse of dimensionality/[FreeTutorials.Eu].url
129 Bytes
20.18 - Bias-Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
20.19 - Intuitive understanding of bias-variance/[FreeTutorials.Eu].url
129 Bytes
20.2 - Imbalanced vs balanced dataset/[FreeTutorials.Eu].url
129 Bytes
20.20 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
20.21 - best and wrost case of algorithm/[FreeTutorials.Eu].url
129 Bytes
20.3 - Multi-class classification/[FreeTutorials.Eu].url
129 Bytes
20.4 - k-NN, given a distance or similarity matrix/[FreeTutorials.Eu].url
129 Bytes
20.5 - Train and test set differences/[FreeTutorials.Eu].url
129 Bytes
20.6 - Impact of outliers/[FreeTutorials.Eu].url
129 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/[FreeTutorials.Eu].url
129 Bytes
20.8 - k distance/[FreeTutorials.Eu].url
129 Bytes
20.9 - Reachability-Distance(A,B)/[FreeTutorials.Eu].url
129 Bytes
21.1 - Accuracy/[FreeTutorials.Eu].url
129 Bytes
21.10 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/[FreeTutorials.Eu].url
129 Bytes
21.3 - Precision and recall, F1-score/[FreeTutorials.Eu].url
129 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/[FreeTutorials.Eu].url
129 Bytes
21.5 - Log-loss/[FreeTutorials.Eu].url
129 Bytes
21.6 - R-SquaredCoefficient of determination/[FreeTutorials.Eu].url
129 Bytes
21.7 - Median absolute deviation (MAD)/[FreeTutorials.Eu].url
129 Bytes
21.8 - Distribution of errors/[FreeTutorials.Eu].url
129 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/[FreeTutorials.Eu].url
129 Bytes
22.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
23.1 - Conditional probability/[FreeTutorials.Eu].url
129 Bytes
23.10 - Bias and Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
23.11 - Feature importance and interpretability/[FreeTutorials.Eu].url
129 Bytes
23.12 - Imbalanced data/[FreeTutorials.Eu].url
129 Bytes
23.13 - Outliers/[FreeTutorials.Eu].url
129 Bytes
23.14 - Missing values/[FreeTutorials.Eu].url
129 Bytes
23.15 - Handling Numerical features (Gaussian NB)/[FreeTutorials.Eu].url
129 Bytes
23.16 - Multiclass classification/[FreeTutorials.Eu].url
129 Bytes
23.17 - Similarity or Distance matrix/[FreeTutorials.Eu].url
129 Bytes
23.18 - Large dimensionality/[FreeTutorials.Eu].url
129 Bytes
23.19 - Best and worst cases/[FreeTutorials.Eu].url
129 Bytes
23.2 - Independent vs Mutually exclusive events/[FreeTutorials.Eu].url
129 Bytes
23.20 - Code example/[FreeTutorials.Eu].url
129 Bytes
23.21 - Assignment-4 Apply Naive Bayes/[FreeTutorials.Eu].url
129 Bytes
23.22 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
23.3 - Bayes Theorem with examples/[FreeTutorials.Eu].url
129 Bytes
23.4 - Exercise problems on Bayes Theorem/[FreeTutorials.Eu].url
129 Bytes
23.5 - Naive Bayes algorithm/[FreeTutorials.Eu].url
129 Bytes
23.6 - Toy example Train and test stages/[FreeTutorials.Eu].url
129 Bytes
23.7 - Naive Bayes on Text data/[FreeTutorials.Eu].url
129 Bytes
23.8 - LaplaceAdditive Smoothing/[FreeTutorials.Eu].url
129 Bytes
23.9 - Log-probabilities for numerical stability/[FreeTutorials.Eu].url
129 Bytes
24.1 - Geometric intuition of Logistic Regression/[FreeTutorials.Eu].url
129 Bytes
24.10 - Column Standardization/[FreeTutorials.Eu].url
129 Bytes
24.11 - Feature importance and Model interpretability/[FreeTutorials.Eu].url
129 Bytes
24.12 - Collinearity of features/[FreeTutorials.Eu].url
129 Bytes
24.13 - TestRun time space and time complexity/[FreeTutorials.Eu].url
129 Bytes
24.14 - Real world cases/[FreeTutorials.Eu].url
129 Bytes
24.15 - Non-linearly separable data & feature engineering/[FreeTutorials.Eu].url
129 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/[FreeTutorials.Eu].url
129 Bytes
24.17 - Assignment-5 Apply Logistic Regression/[FreeTutorials.Eu].url
129 Bytes
24.18 - Extensions to Generalized linear models/[FreeTutorials.Eu].url
129 Bytes
24.2 - Sigmoid function Squashing/[FreeTutorials.Eu].url
129 Bytes
24.3 - Mathematical formulation of Objective function/[FreeTutorials.Eu].url
129 Bytes
24.4 - Weight vector/[FreeTutorials.Eu].url
129 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/[FreeTutorials.Eu].url
129 Bytes
24.6 - L1 regularization and sparsity/[FreeTutorials.Eu].url
129 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/[FreeTutorials.Eu].url
129 Bytes
24.8 - Loss minimization interpretation/[FreeTutorials.Eu].url
129 Bytes
24.9 - hyperparameters and random search/[FreeTutorials.Eu].url
129 Bytes
25.1 - Geometric intuition of Linear Regression/[FreeTutorials.Eu].url
129 Bytes
25.2 - Mathematical formulation/[FreeTutorials.Eu].url
129 Bytes
25.3 - Real world Cases/[FreeTutorials.Eu].url
129 Bytes
25.4 - Code sample for Linear Regression/[FreeTutorials.Eu].url
129 Bytes
26.1 - Differentiation/[FreeTutorials.Eu].url
129 Bytes
26.10 - Logistic regression formulation revisited/[FreeTutorials.Eu].url
129 Bytes
26.11 - Why L1 regularization creates sparsity/[FreeTutorials.Eu].url
129 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/[FreeTutorials.Eu].url
129 Bytes
26.13 - Revision questions/[FreeTutorials.Eu].url
129 Bytes
26.2 - Online differentiation tools/[FreeTutorials.Eu].url
129 Bytes
26.3 - Maxima and Minima/[FreeTutorials.Eu].url
129 Bytes
26.4 - Vector calculus Grad/[FreeTutorials.Eu].url
129 Bytes
26.5 - Gradient descent geometric intuition/[FreeTutorials.Eu].url
129 Bytes
26.6 - Learning rate/[FreeTutorials.Eu].url
129 Bytes
26.7 - Gradient descent for linear regression/[FreeTutorials.Eu].url
129 Bytes
26.8 - SGD algorithm/[FreeTutorials.Eu].url
129 Bytes
26.9 - Constrained Optimization & PCA/[FreeTutorials.Eu].url
129 Bytes
27.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
28.1 - Geometric Intution/[FreeTutorials.Eu].url
129 Bytes
28.10 - Train and run time complexities/[FreeTutorials.Eu].url
129 Bytes
28.11 - nu-SVM control errors and support vectors/[FreeTutorials.Eu].url
129 Bytes
28.12 - SVM Regression/[FreeTutorials.Eu].url
129 Bytes
28.13 - Cases/[FreeTutorials.Eu].url
129 Bytes
28.14 - Code Sample/[FreeTutorials.Eu].url
129 Bytes
28.15 - Assignment-7 Apply SVM/[FreeTutorials.Eu].url
129 Bytes
28.16 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
28.2 - Mathematical derivation/[FreeTutorials.Eu].url
129 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/[FreeTutorials.Eu].url
129 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/[FreeTutorials.Eu].url
129 Bytes
28.5 - Dual form of SVM formulation/[FreeTutorials.Eu].url
129 Bytes
28.6 - kernel trick/[FreeTutorials.Eu].url
129 Bytes
28.7 - Polynomial Kernel/[FreeTutorials.Eu].url
129 Bytes
28.8 - RBF-Kernel/[FreeTutorials.Eu].url
129 Bytes
28.9 - Domain specific Kernels/[FreeTutorials.Eu].url
129 Bytes
29.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
3.1 - Lists/[FreeTutorials.Eu].url
129 Bytes
3.2 - Tuples part 1/[FreeTutorials.Eu].url
129 Bytes
3.3 - Tuples part-2/[FreeTutorials.Eu].url
129 Bytes
3.4 - Sets/[FreeTutorials.Eu].url
129 Bytes
3.5 - Dictionary/[FreeTutorials.Eu].url
129 Bytes
3.6 - Strings/[FreeTutorials.Eu].url
129 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/[FreeTutorials.Eu].url
129 Bytes
30.10 - Overfitting and Underfitting/[FreeTutorials.Eu].url
129 Bytes
30.11 - Train and Run time complexity/[FreeTutorials.Eu].url
129 Bytes
30.12 - Regression using Decision Trees/[FreeTutorials.Eu].url
129 Bytes
30.13 - Cases/[FreeTutorials.Eu].url
129 Bytes
30.14 - Code Samples/[FreeTutorials.Eu].url
129 Bytes
30.15 - Assignment-8 Apply Decision Trees/[FreeTutorials.Eu].url
129 Bytes
30.16 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
30.2 - Sample Decision tree/[FreeTutorials.Eu].url
129 Bytes
30.3 - Building a decision TreeEntropy/[FreeTutorials.Eu].url
129 Bytes
30.4 - Building a decision TreeInformation Gain/[FreeTutorials.Eu].url
129 Bytes
30.5 - Building a decision Tree Gini Impurity/[FreeTutorials.Eu].url
129 Bytes
30.6 - Building a decision Tree Constructing a DT/[FreeTutorials.Eu].url
129 Bytes
30.7 - Building a decision Tree Splitting numerical features/[FreeTutorials.Eu].url
129 Bytes
30.8 - Feature standardization/[FreeTutorials.Eu].url
129 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/[FreeTutorials.Eu].url
129 Bytes
31.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
32.1 - What are ensembles/[FreeTutorials.Eu].url
129 Bytes
32.10 - Residuals, Loss functions and gradients/[FreeTutorials.Eu].url
129 Bytes
32.11 - Gradient Boosting/[FreeTutorials.Eu].url
129 Bytes
32.12 - Regularization by Shrinkage/[FreeTutorials.Eu].url
129 Bytes
32.13 - Train and Run time complexity/[FreeTutorials.Eu].url
129 Bytes
32.14 - XGBoost Boosting + Randomization/[FreeTutorials.Eu].url
129 Bytes
32.15 - AdaBoost geometric intuition/[FreeTutorials.Eu].url
129 Bytes
32.16 - Stacking models/[FreeTutorials.Eu].url
129 Bytes
32.17 - Cascading classifiers/[FreeTutorials.Eu].url
129 Bytes
32.18 - Kaggle competitions vs Real world/[FreeTutorials.Eu].url
129 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/[FreeTutorials.Eu].url
129 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/[FreeTutorials.Eu].url
129 Bytes
32.20 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
32.3 - Random Forest and their construction/[FreeTutorials.Eu].url
129 Bytes
32.4 - Bias-Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
32.5 - Train and run time complexity/[FreeTutorials.Eu].url
129 Bytes
32.6 - BaggingCode Sample/[FreeTutorials.Eu].url
129 Bytes
32.7 - Extremely randomized trees/[FreeTutorials.Eu].url
129 Bytes
32.8 - Random Tree Cases/[FreeTutorials.Eu].url
129 Bytes
32.9 - Boosting Intuition/[FreeTutorials.Eu].url
129 Bytes
33.1 - Introduction/[FreeTutorials.Eu].url
129 Bytes
33.10 - Indicator variables/[FreeTutorials.Eu].url
129 Bytes
33.11 - Feature binning/[FreeTutorials.Eu].url
129 Bytes
33.12 - Interaction variables/[FreeTutorials.Eu].url
129 Bytes
33.13 - Mathematical transforms/[FreeTutorials.Eu].url
129 Bytes
33.14 - Model specific featurizations/[FreeTutorials.Eu].url
129 Bytes
33.15 - Feature orthogonality/[FreeTutorials.Eu].url
129 Bytes
33.16 - Domain specific featurizations/[FreeTutorials.Eu].url
129 Bytes
33.17 - Feature slicing/[FreeTutorials.Eu].url
129 Bytes
33.18 - Kaggle Winners solutions/[FreeTutorials.Eu].url
129 Bytes
33.2 - Moving window for Time Series Data/[FreeTutorials.Eu].url
129 Bytes
33.3 - Fourier decomposition/[FreeTutorials.Eu].url
129 Bytes
33.4 - Deep learning features LSTM/[FreeTutorials.Eu].url
129 Bytes
33.5 - Image histogram/[FreeTutorials.Eu].url
129 Bytes
33.6 - Keypoints SIFT/[FreeTutorials.Eu].url
129 Bytes
33.7 - Deep learning features CNN/[FreeTutorials.Eu].url
129 Bytes
33.8 - Relational data/[FreeTutorials.Eu].url
129 Bytes
33.9 - Graph data/[FreeTutorials.Eu].url
129 Bytes
34.1 - Calibration of ModelsNeed for calibration/[FreeTutorials.Eu].url
129 Bytes
34.10 - AB testing/[FreeTutorials.Eu].url
129 Bytes
34.11 - Data Science Life cycle/[FreeTutorials.Eu].url
129 Bytes
34.12 - VC dimension/[FreeTutorials.Eu].url
129 Bytes
34.2 - Productionization and deployment of Machine Learning Models/[FreeTutorials.Eu].url
129 Bytes
34.3 - Calibration Plots/[FreeTutorials.Eu].url
129 Bytes
34.4 - Platt’s CalibrationScaling/[FreeTutorials.Eu].url
129 Bytes
34.5 - Isotonic Regression/[FreeTutorials.Eu].url
129 Bytes
34.6 - Code Samples/[FreeTutorials.Eu].url
129 Bytes
34.7 - Modeling in the presence of outliers RANSAC/[FreeTutorials.Eu].url
129 Bytes
34.8 - Productionizing models/[FreeTutorials.Eu].url
129 Bytes
34.9 - Retraining models periodically/[FreeTutorials.Eu].url
129 Bytes
35.1 - What is Clustering/[FreeTutorials.Eu].url
129 Bytes
35.10 - K-Medoids/[FreeTutorials.Eu].url
129 Bytes
35.11 - Determining the right K/[FreeTutorials.Eu].url
129 Bytes
35.12 - Code Samples/[FreeTutorials.Eu].url
129 Bytes
35.13 - Time and space complexity/[FreeTutorials.Eu].url
129 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeTutorials.Eu].url
129 Bytes
35.2 - Unsupervised learning/[FreeTutorials.Eu].url
129 Bytes
35.3 - Applications/[FreeTutorials.Eu].url
129 Bytes
35.4 - Metrics for Clustering/[FreeTutorials.Eu].url
129 Bytes
35.5 - K-Means Geometric intuition, Centroids/[FreeTutorials.Eu].url
129 Bytes
35.6 - K-Means Mathematical formulation Objective function/[FreeTutorials.Eu].url
129 Bytes
35.7 - K-Means Algorithm/[FreeTutorials.Eu].url
129 Bytes
35.8 - How to initialize K-Means++/[FreeTutorials.Eu].url
129 Bytes
35.9 - Failure casesLimitations/[FreeTutorials.Eu].url
129 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/[FreeTutorials.Eu].url
129 Bytes
36.2 - Agglomerative Clustering/[FreeTutorials.Eu].url
129 Bytes
36.3 - Proximity methods Advantages and Limitations/[FreeTutorials.Eu].url
129 Bytes
36.4 - Time and Space Complexity/[FreeTutorials.Eu].url
129 Bytes
36.5 - Limitations of Hierarchical Clustering/[FreeTutorials.Eu].url
129 Bytes
36.6 - Code sample/[FreeTutorials.Eu].url
129 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeTutorials.Eu].url
129 Bytes
37.1 - Density based clustering/[FreeTutorials.Eu].url
129 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/[FreeTutorials.Eu].url
129 Bytes
37.11 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
37.2 - MinPts and Eps Density/[FreeTutorials.Eu].url
129 Bytes
37.3 - Core, Border and Noise points/[FreeTutorials.Eu].url
129 Bytes
37.4 - Density edge and Density connected points/[FreeTutorials.Eu].url
129 Bytes
37.5 - DBSCAN Algorithm/[FreeTutorials.Eu].url
129 Bytes
37.6 - Hyper Parameters MinPts and Eps/[FreeTutorials.Eu].url
129 Bytes
37.7 - Advantages and Limitations of DBSCAN/[FreeTutorials.Eu].url
129 Bytes
37.8 - Time and Space Complexity/[FreeTutorials.Eu].url
129 Bytes
37.9 - Code samples/[FreeTutorials.Eu].url
129 Bytes
38.1 - Problem formulation Movie reviews/[FreeTutorials.Eu].url
129 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/[FreeTutorials.Eu].url
129 Bytes
38.11 - Cold Start problem/[FreeTutorials.Eu].url
129 Bytes
38.12 - Word vectors as MF/[FreeTutorials.Eu].url
129 Bytes
38.13 - Eigen-Faces/[FreeTutorials.Eu].url
129 Bytes
38.14 - Code example/[FreeTutorials.Eu].url
129 Bytes
38.15 - Assignment-11 Apply Truncated SVD/[FreeTutorials.Eu].url
129 Bytes
38.16 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
38.2 - Content based vs Collaborative Filtering/[FreeTutorials.Eu].url
129 Bytes
38.3 - Similarity based Algorithms/[FreeTutorials.Eu].url
129 Bytes
38.4 - Matrix Factorization PCA, SVD/[FreeTutorials.Eu].url
129 Bytes
38.5 - Matrix Factorization NMF/[FreeTutorials.Eu].url
129 Bytes
38.6 - Matrix Factorization for Collaborative filtering/[FreeTutorials.Eu].url
129 Bytes
38.7 - Matrix Factorization for feature engineering/[FreeTutorials.Eu].url
129 Bytes
38.8 - Clustering as MF/[FreeTutorials.Eu].url
129 Bytes
38.9 - Hyperparameter tuning/[FreeTutorials.Eu].url
129 Bytes
39.1 - Questions & Answers/[FreeTutorials.Eu].url
129 Bytes
4.1 - Introduction/[FreeTutorials.Eu].url
129 Bytes
4.10 - Debugging Python/[FreeTutorials.Eu].url
129 Bytes
4.2 - Types of functions/[FreeTutorials.Eu].url
129 Bytes
4.3 - Function arguments/[FreeTutorials.Eu].url
129 Bytes
4.4 - Recursive functions/[FreeTutorials.Eu].url
129 Bytes
4.5 - Lambda functions/[FreeTutorials.Eu].url
129 Bytes
4.6 - Modules/[FreeTutorials.Eu].url
129 Bytes
4.7 - Packages/[FreeTutorials.Eu].url
129 Bytes
4.8 - File Handling/[FreeTutorials.Eu].url
129 Bytes
4.9 - Exception Handling/[FreeTutorials.Eu].url
129 Bytes
40.1 - BusinessReal world problem/[FreeTutorials.Eu].url
129 Bytes
40.10 - Data Modeling Multi label Classification/[FreeTutorials.Eu].url
129 Bytes
40.11 - Data preparation/[FreeTutorials.Eu].url
129 Bytes
40.12 - Train-Test Split/[FreeTutorials.Eu].url
129 Bytes
40.13 - Featurization/[FreeTutorials.Eu].url
129 Bytes
40.14 - Logistic regression One VS Rest/[FreeTutorials.Eu].url
129 Bytes
40.15 - Sampling data and tags+Weighted models/[FreeTutorials.Eu].url
129 Bytes
40.16 - Logistic regression revisited/[FreeTutorials.Eu].url
129 Bytes
40.17 - Why not use advanced techniques/[FreeTutorials.Eu].url
129 Bytes
40.18 - Assignments/[FreeTutorials.Eu].url
129 Bytes
40.2 - Business objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
40.3 - Mapping to an ML problem Data overview/[FreeTutorials.Eu].url
129 Bytes
40.4 - Mapping to an ML problemML problem formulation/[FreeTutorials.Eu].url
129 Bytes
40.5 - Mapping to an ML problemPerformance metrics/[FreeTutorials.Eu].url
129 Bytes
40.6 - Hamming loss/[FreeTutorials.Eu].url
129 Bytes
40.7 - EDAData Loading/[FreeTutorials.Eu].url
129 Bytes
40.8 - EDAAnalysis of tags/[FreeTutorials.Eu].url
129 Bytes
40.9 - EDAData Preprocessing/[FreeTutorials.Eu].url
129 Bytes
41.1 - BusinessReal world problem Problem definition/[FreeTutorials.Eu].url
129 Bytes
41.10 - EDA Feature analysis/[FreeTutorials.Eu].url
129 Bytes
41.11 - EDA Data Visualization T-SNE/[FreeTutorials.Eu].url
129 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/[FreeTutorials.Eu].url
129 Bytes
41.13 - ML Models Loading Data/[FreeTutorials.Eu].url
129 Bytes
41.14 - ML Models Random Model/[FreeTutorials.Eu].url
129 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/[FreeTutorials.Eu].url
129 Bytes
41.16 - ML Models XGBoost/[FreeTutorials.Eu].url
129 Bytes
41.17 - Assignments/[FreeTutorials.Eu].url
129 Bytes
41.2 - Business objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
41.3 - Mapping to an ML problem Data overview/[FreeTutorials.Eu].url
129 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/[FreeTutorials.Eu].url
129 Bytes
41.5 - Mapping to an ML problem Train-test split/[FreeTutorials.Eu].url
129 Bytes
41.6 - EDA Basic Statistics/[FreeTutorials.Eu].url
129 Bytes
41.7 - EDA Basic Feature Extraction/[FreeTutorials.Eu].url
129 Bytes
41.8 - EDA Text Preprocessing/[FreeTutorials.Eu].url
129 Bytes
41.9 - EDA Advanced Feature Extraction/[FreeTutorials.Eu].url
129 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/[FreeTutorials.Eu].url
129 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/[FreeTutorials.Eu].url
129 Bytes
42.11 - Stemming/[FreeTutorials.Eu].url
129 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/[FreeTutorials.Eu].url
129 Bytes
42.13 - Code for bag of words based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.14 - TF-IDF featurizing text based on word-importance/[FreeTutorials.Eu].url
129 Bytes
42.15 - Code for TF-IDF based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.16 - Code for IDF based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/[FreeTutorials.Eu].url
129 Bytes
42.18 - Code for Average Word2Vec product similarity/[FreeTutorials.Eu].url
129 Bytes
42.19 - TF-IDF weighted Word2Vec/[FreeTutorials.Eu].url
129 Bytes
42.2 - Plan of action/[FreeTutorials.Eu].url
129 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/[FreeTutorials.Eu].url
129 Bytes
42.21 - Weighted similarity using brand and color/[FreeTutorials.Eu].url
129 Bytes
42.22 - Code for weighted similarity/[FreeTutorials.Eu].url
129 Bytes
42.23 - Building a real world solution/[FreeTutorials.Eu].url
129 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/[FreeTutorials.Eu].url
129 Bytes
42.25 - Using Keras + Tensorflow to extract features/[FreeTutorials.Eu].url
129 Bytes
42.26 - Visual similarity based product similarity/[FreeTutorials.Eu].url
129 Bytes
42.27 - Measuring goodness of our solution AB testing/[FreeTutorials.Eu].url
129 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/[FreeTutorials.Eu].url
129 Bytes
42.3 - Amazon product advertising API/[FreeTutorials.Eu].url
129 Bytes
42.4 - Data folders and paths/[FreeTutorials.Eu].url
129 Bytes
42.5 - Overview of the data and Terminology/[FreeTutorials.Eu].url
129 Bytes
42.6 - Data cleaning and understandingMissing data in various features/[FreeTutorials.Eu].url
129 Bytes
42.7 - Understand duplicate rows/[FreeTutorials.Eu].url
129 Bytes
42.8 - Remove duplicates Part 1/[FreeTutorials.Eu].url
129 Bytes
42.9 - Remove duplicates Part 2/[FreeTutorials.Eu].url
129 Bytes
43.1 - Businessreal world problem Problem definition/[FreeTutorials.Eu].url
129 Bytes
43.10 - ML models – using byte files only Random Model/[FreeTutorials.Eu].url
129 Bytes
43.11 - k-NN/[FreeTutorials.Eu].url
129 Bytes
43.12 - Logistic regression/[FreeTutorials.Eu].url
129 Bytes
43.13 - Random Forest and Xgboost/[FreeTutorials.Eu].url
129 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/[FreeTutorials.Eu].url
129 Bytes
43.15 - File-size feature/[FreeTutorials.Eu].url
129 Bytes
43.16 - Univariate analysis/[FreeTutorials.Eu].url
129 Bytes
43.17 - t-SNE analysis/[FreeTutorials.Eu].url
129 Bytes
43.18 - ML models on ASM file features/[FreeTutorials.Eu].url
129 Bytes
43.19 - Models on all features t-SNE/[FreeTutorials.Eu].url
129 Bytes
43.2 - Businessreal world problem Objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
43.20 - Models on all features RandomForest and Xgboost/[FreeTutorials.Eu].url
129 Bytes
43.21 - Assignments/[FreeTutorials.Eu].url
129 Bytes
43.3 - Machine Learning problem mapping Data overview/[FreeTutorials.Eu].url
129 Bytes
43.4 - Machine Learning problem mapping ML problem/[FreeTutorials.Eu].url
129 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/[FreeTutorials.Eu].url
129 Bytes
43.6 - Exploratory Data Analysis Class distribution/[FreeTutorials.Eu].url
129 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/[FreeTutorials.Eu].url
129 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/[FreeTutorials.Eu].url
129 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/[FreeTutorials.Eu].url
129 Bytes
44.1 - BusinessReal world problemProblem definition/[FreeTutorials.Eu].url
129 Bytes
44.10 - Exploratory Data AnalysisCold start problem/[FreeTutorials.Eu].url
129 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/[FreeTutorials.Eu].url
129 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/[FreeTutorials.Eu].url
129 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/[FreeTutorials.Eu].url
129 Bytes
44.14 - ML ModelsSurprise library/[FreeTutorials.Eu].url
129 Bytes
44.15 - Overview of the modelling strategy/[FreeTutorials.Eu].url
129 Bytes
44.16 - Data Sampling/[FreeTutorials.Eu].url
129 Bytes
44.17 - Google drive with intermediate files/[FreeTutorials.Eu].url
129 Bytes
44.18 - Featurizations for regression/[FreeTutorials.Eu].url
129 Bytes
44.19 - Data transformation for Surprise/[FreeTutorials.Eu].url
129 Bytes
44.2 - Objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
44.20 - Xgboost with 13 features/[FreeTutorials.Eu].url
129 Bytes
44.21 - Surprise Baseline model/[FreeTutorials.Eu].url
129 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/[FreeTutorials.Eu].url
129 Bytes
44.23 - Surprise KNN predictors/[FreeTutorials.Eu].url
129 Bytes
44.24 - Matrix Factorization models using Surprise/[FreeTutorials.Eu].url
129 Bytes
44.25 - SVD ++ with implicit feedback/[FreeTutorials.Eu].url
129 Bytes
44.26 - Final models with all features and predictors/[FreeTutorials.Eu].url
129 Bytes
44.27 - Comparison between various models/[FreeTutorials.Eu].url
129 Bytes
44.28 - Assignments/[FreeTutorials.Eu].url
129 Bytes
44.3 - Mapping to an ML problemData overview/[FreeTutorials.Eu].url
129 Bytes
44.4 - Mapping to an ML problemML problem formulation/[FreeTutorials.Eu].url
129 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/[FreeTutorials.Eu].url
129 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/[FreeTutorials.Eu].url
129 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/[FreeTutorials.Eu].url
129 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/[FreeTutorials.Eu].url
129 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/[FreeTutorials.Eu].url
129 Bytes
45.1 - BusinessReal world problem Overview/[FreeTutorials.Eu].url
129 Bytes
45.10 - Univariate AnalysisVariation Feature/[FreeTutorials.Eu].url
129 Bytes
45.11 - Univariate AnalysisText feature/[FreeTutorials.Eu].url
129 Bytes
45.12 - Machine Learning ModelsData preparation/[FreeTutorials.Eu].url
129 Bytes
45.13 - Baseline Model Naive Bayes/[FreeTutorials.Eu].url
129 Bytes
45.14 - K-Nearest Neighbors Classification/[FreeTutorials.Eu].url
129 Bytes
45.15 - Logistic Regression with class balancing/[FreeTutorials.Eu].url
129 Bytes
45.16 - Logistic Regression without class balancing/[FreeTutorials.Eu].url
129 Bytes
45.17 - Linear-SVM/[FreeTutorials.Eu].url
129 Bytes
45.18 - Random-Forest with one-hot encoded features/[FreeTutorials.Eu].url
129 Bytes
45.19 - Random-Forest with response-coded features/[FreeTutorials.Eu].url
129 Bytes
45.2 - Business objectives and constraints/[FreeTutorials.Eu].url
129 Bytes
45.20 - Stacking Classifier/[FreeTutorials.Eu].url
129 Bytes
45.21 - Majority Voting classifier/[FreeTutorials.Eu].url
129 Bytes
45.22 - Assignments/[FreeTutorials.Eu].url
129 Bytes
45.3 - ML problem formulation Data/[FreeTutorials.Eu].url
129 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/[FreeTutorials.Eu].url
129 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/[FreeTutorials.Eu].url
129 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/[FreeTutorials.Eu].url
129 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/[FreeTutorials.Eu].url
129 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/[FreeTutorials.Eu].url
129 Bytes
45.8 - Exploratory Data Analysis “Random” Model/[FreeTutorials.Eu].url
129 Bytes
45.9 - Univariate AnalysisGene feature/[FreeTutorials.Eu].url
129 Bytes
46.1 - BusinessReal world problem Overview/[FreeTutorials.Eu].url
129 Bytes
46.10 - Data Cleaning Speed/[FreeTutorials.Eu].url
129 Bytes
46.11 - Data Cleaning Distance/[FreeTutorials.Eu].url
129 Bytes
46.12 - Data Cleaning Fare/[FreeTutorials.Eu].url
129 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/[FreeTutorials.Eu].url
129 Bytes
46.14 - Data PreparationClusteringSegmentation/[FreeTutorials.Eu].url
129 Bytes
46.15 - Data PreparationTime binning/[FreeTutorials.Eu].url
129 Bytes
46.16 - Data PreparationSmoothing time-series data/[FreeTutorials.Eu].url
129 Bytes
46.17 - Data PreparationSmoothing time-series data cont/[FreeTutorials.Eu].url
129 Bytes
46.18 - Data Preparation Time series and Fourier transforms/[FreeTutorials.Eu].url
129 Bytes
46.19 - Ratios and previous-time-bin values/[FreeTutorials.Eu].url
129 Bytes
46.2 - Objectives and Constraints/[FreeTutorials.Eu].url
129 Bytes
46.20 - Simple moving average/[FreeTutorials.Eu].url
129 Bytes
46.21 - Weighted Moving average/[FreeTutorials.Eu].url
129 Bytes
46.22 - Exponential weighted moving average/[FreeTutorials.Eu].url
129 Bytes
46.23 - Results/[FreeTutorials.Eu].url
129 Bytes
46.24 - Regression models Train-Test split & Features/[FreeTutorials.Eu].url
129 Bytes
46.25 - Linear regression/[FreeTutorials.Eu].url
129 Bytes
46.26 - Random Forest regression/[FreeTutorials.Eu].url
129 Bytes
46.27 - Xgboost Regression/[FreeTutorials.Eu].url
129 Bytes
46.28 - Model comparison/[FreeTutorials.Eu].url
129 Bytes
46.29 - Assignment/[FreeTutorials.Eu].url
129 Bytes
46.3 - Mapping to ML problem Data/[FreeTutorials.Eu].url
129 Bytes
46.4 - Mapping to ML problem dask dataframes/[FreeTutorials.Eu].url
129 Bytes
46.5 - Mapping to ML problem FieldsFeatures/[FreeTutorials.Eu].url
129 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/[FreeTutorials.Eu].url
129 Bytes
46.7 - Mapping to ML problem Performance metrics/[FreeTutorials.Eu].url
129 Bytes
46.8 - Data Cleaning Latitude and Longitude data/[FreeTutorials.Eu].url
129 Bytes
46.9 - Data Cleaning Trip Duration/[FreeTutorials.Eu].url
129 Bytes
47.1 - History of Neural networks and Deep Learning/[FreeTutorials.Eu].url
129 Bytes
47.10 - Backpropagation/[FreeTutorials.Eu].url
129 Bytes
47.11 - Activation functions/[FreeTutorials.Eu].url
129 Bytes
47.12 - Vanishing Gradient problem/[FreeTutorials.Eu].url
129 Bytes
47.13 - Bias-Variance tradeoff/[FreeTutorials.Eu].url
129 Bytes
47.14 - Decision surfaces Playground/[FreeTutorials.Eu].url
129 Bytes
47.2 - How Biological Neurons work/[FreeTutorials.Eu].url
129 Bytes
47.3 - Growth of biological neural networks/[FreeTutorials.Eu].url
129 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/[FreeTutorials.Eu].url
129 Bytes
47.5 - Multi-Layered Perceptron (MLP)/[FreeTutorials.Eu].url
129 Bytes
47.6 - Notation/[FreeTutorials.Eu].url
129 Bytes
47.7 - Training a single-neuron model/[FreeTutorials.Eu].url
129 Bytes
47.8 - Training an MLP Chain Rule/[FreeTutorials.Eu].url
129 Bytes
47.9 - Training an MLPMemoization/[FreeTutorials.Eu].url
129 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/[FreeTutorials.Eu].url
129 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/[FreeTutorials.Eu].url
129 Bytes
48.11 - OptimizersAdaGrad/[FreeTutorials.Eu].url
129 Bytes
48.12 - Optimizers Adadelta andRMSProp/[FreeTutorials.Eu].url
129 Bytes
48.13 - Adam/[FreeTutorials.Eu].url
129 Bytes
48.14 - Which algorithm to choose when/[FreeTutorials.Eu].url
129 Bytes
48.15 - Gradient Checking and clipping/[FreeTutorials.Eu].url
129 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/[FreeTutorials.Eu].url
129 Bytes
48.17 - How to train a Deep MLP/[FreeTutorials.Eu].url
129 Bytes
48.18 - Auto Encoders/[FreeTutorials.Eu].url
129 Bytes
48.19 - Word2Vec CBOW/[FreeTutorials.Eu].url
129 Bytes
48.2 - Dropout layers & Regularization/[FreeTutorials.Eu].url
129 Bytes
48.20 - Word2Vec Skip-gram/[FreeTutorials.Eu].url
129 Bytes
48.21 - Word2Vec Algorithmic Optimizations/[FreeTutorials.Eu].url
129 Bytes
48.3 - Rectified Linear Units (ReLU)/[FreeTutorials.Eu].url
129 Bytes
48.4 - Weight initialization/[FreeTutorials.Eu].url
129 Bytes
48.5 - Batch Normalization/[FreeTutorials.Eu].url
129 Bytes
48.6 - OptimizersHill-descent analogy in 2D/[FreeTutorials.Eu].url
129 Bytes
48.7 - OptimizersHill descent in 3D and contours/[FreeTutorials.Eu].url
129 Bytes
48.8 - SGD Recap/[FreeTutorials.Eu].url
129 Bytes
48.9 - Batch SGD with momentum/[FreeTutorials.Eu].url
129 Bytes
49.1 - Tensorflow and Keras overview/[FreeTutorials.Eu].url
129 Bytes
49.10 - Model 3 Batch Normalization/[FreeTutorials.Eu].url
129 Bytes
49.11 - Model 4 Dropout/[FreeTutorials.Eu].url
129 Bytes
49.12 - MNIST classification in Keras/[FreeTutorials.Eu].url
129 Bytes
49.13 - Hyperparameter tuning in Keras/[FreeTutorials.Eu].url
129 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
49.2 - GPU vs CPU for Deep Learning/[FreeTutorials.Eu].url
129 Bytes
49.3 - Google Colaboratory/[FreeTutorials.Eu].url
129 Bytes
49.4 - Install TensorFlow/[FreeTutorials.Eu].url
129 Bytes
49.5 - Online documentation and tutorials/[FreeTutorials.Eu].url
129 Bytes
49.6 - Softmax Classifier on MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
49.7 - MLP Initialization/[FreeTutorials.Eu].url
129 Bytes
49.8 - Model 1 Sigmoid activation/[FreeTutorials.Eu].url
129 Bytes
49.9 - Model 2 ReLU activation/[FreeTutorials.Eu].url
129 Bytes
5.1 - Numpy Introduction/[FreeTutorials.Eu].url
129 Bytes
5.2 - Numerical operations on Numpy/[FreeTutorials.Eu].url
129 Bytes
50.1 - Biological inspiration Visual Cortex/[FreeTutorials.Eu].url
129 Bytes
50.10 - Data Augmentation/[FreeTutorials.Eu].url
129 Bytes
50.11 - Convolution Layers in Keras/[FreeTutorials.Eu].url
129 Bytes
50.12 - AlexNet/[FreeTutorials.Eu].url
129 Bytes
50.13 - VGGNet/[FreeTutorials.Eu].url
129 Bytes
50.14 - Residual Network/[FreeTutorials.Eu].url
129 Bytes
50.15 - Inception Network/[FreeTutorials.Eu].url
129 Bytes
50.16 - What is Transfer learning/[FreeTutorials.Eu].url
129 Bytes
50.17 - Code example Cats vs Dogs/[FreeTutorials.Eu].url
129 Bytes
50.18 - Code Example MNIST dataset/[FreeTutorials.Eu].url
129 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/[FreeTutorials.Eu].url
129 Bytes
50.2 - ConvolutionEdge Detection on images/[FreeTutorials.Eu].url
129 Bytes
50.3 - ConvolutionPadding and strides/[FreeTutorials.Eu].url
129 Bytes
50.4 - Convolution over RGB images/[FreeTutorials.Eu].url
129 Bytes
50.5 - Convolutional layer/[FreeTutorials.Eu].url
129 Bytes
50.6 - Max-pooling/[FreeTutorials.Eu].url
129 Bytes
50.7 - CNN Training Optimization/[FreeTutorials.Eu].url
129 Bytes
50.8 - Example CNN LeNet [1998]/[FreeTutorials.Eu].url
129 Bytes
50.9 - ImageNet dataset/[FreeTutorials.Eu].url
129 Bytes
51.1 - Why RNNs/[FreeTutorials.Eu].url
129 Bytes
51.10 - Code example IMDB Sentiment classification/[FreeTutorials.Eu].url
129 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/[FreeTutorials.Eu].url
129 Bytes
51.2 - Recurrent Neural Network/[FreeTutorials.Eu].url
129 Bytes
51.3 - Training RNNs Backprop/[FreeTutorials.Eu].url
129 Bytes
51.4 - Types of RNNs/[FreeTutorials.Eu].url
129 Bytes
51.5 - Need for LSTMGRU/[FreeTutorials.Eu].url
129 Bytes
51.6 - LSTM/[FreeTutorials.Eu].url
129 Bytes
51.7 - GRUs/[FreeTutorials.Eu].url
129 Bytes
51.8 - Deep RNN/[FreeTutorials.Eu].url
129 Bytes
51.9 - Bidirectional RNN/[FreeTutorials.Eu].url
129 Bytes
52.1 - Questions and Answers/[FreeTutorials.Eu].url
129 Bytes
53.1 - Self Driving Car Problem definition/[FreeTutorials.Eu].url
129 Bytes
53.10 - NVIDIA’s end to end CNN model/[FreeTutorials.Eu].url
129 Bytes
53.11 - Train the model/[FreeTutorials.Eu].url
129 Bytes
53.12 - Test and visualize the output/[FreeTutorials.Eu].url
129 Bytes
53.13 - Extensions/[FreeTutorials.Eu].url
129 Bytes
53.14 - Assignment/[FreeTutorials.Eu].url
129 Bytes
53.2 - Datasets/[FreeTutorials.Eu].url
129 Bytes
53.2 - Datasets#/[FreeTutorials.Eu].url
129 Bytes
53.3 - Data understanding & Analysis Files and folders/[FreeTutorials.Eu].url
129 Bytes
53.4 - Dash-cam images and steering angles/[FreeTutorials.Eu].url
129 Bytes
53.5 - Split the dataset Train vs Test/[FreeTutorials.Eu].url
129 Bytes
53.6 - EDA Steering angles/[FreeTutorials.Eu].url
129 Bytes
53.7 - Mean Baseline model simple/[FreeTutorials.Eu].url
129 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/[FreeTutorials.Eu].url
129 Bytes
53.9 - Batch load the dataset/[FreeTutorials.Eu].url
129 Bytes
54.1 - Real-world problem/[FreeTutorials.Eu].url
129 Bytes
54.10 - MIDI music generation/[FreeTutorials.Eu].url
129 Bytes
54.11 - Survey blog/[FreeTutorials.Eu].url
129 Bytes
54.2 - Music representation/[FreeTutorials.Eu].url
129 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/[FreeTutorials.Eu].url
129 Bytes
54.4 - Char-RNN with abc-notation Data preparation/[FreeTutorials.Eu].url
129 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/[FreeTutorials.Eu].url
129 Bytes
54.6 - Char-RNN with abc-notation State full RNN/[FreeTutorials.Eu].url
129 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/[FreeTutorials.Eu].url
129 Bytes
54.8 - Char-RNN with abc-notation Music generation/[FreeTutorials.Eu].url
129 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/[FreeTutorials.Eu].url
129 Bytes
55.1 - Human Activity Recognition Problem definition/[FreeTutorials.Eu].url
129 Bytes
55.2 - Dataset understanding/[FreeTutorials.Eu].url
129 Bytes
55.3 - Data cleaning & preprocessing/[FreeTutorials.Eu].url
129 Bytes
55.4 - EDAUnivariate analysis/[FreeTutorials.Eu].url
129 Bytes
55.5 - EDAData visualization using t-SNE/[FreeTutorials.Eu].url
129 Bytes
55.6 - Classical ML models/[FreeTutorials.Eu].url
129 Bytes
55.7 - Deep-learning Model/[FreeTutorials.Eu].url
129 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/[FreeTutorials.Eu].url
129 Bytes
56.1 - Problem definition/[FreeTutorials.Eu].url
129 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/[FreeTutorials.Eu].url
129 Bytes
56.11 - PageRank/[FreeTutorials.Eu].url
129 Bytes
56.12 - Shortest Path/[FreeTutorials.Eu].url
129 Bytes
56.13 - Connected-components/[FreeTutorials.Eu].url
129 Bytes
56.14 - Adar Index/[FreeTutorials.Eu].url
129 Bytes
56.15 - Kartz Centrality/[FreeTutorials.Eu].url
129 Bytes
56.16 - HITS Score/[FreeTutorials.Eu].url
129 Bytes
56.17 - SVD/[FreeTutorials.Eu].url
129 Bytes
56.18 - Weight features/[FreeTutorials.Eu].url
129 Bytes
56.19 - Modeling/[FreeTutorials.Eu].url
129 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/[FreeTutorials.Eu].url
129 Bytes
56.3 - Data format & Limitations/[FreeTutorials.Eu].url
129 Bytes
56.4 - Mapping to a supervised classification problem/[FreeTutorials.Eu].url
129 Bytes
56.5 - Business constraints & Metrics/[FreeTutorials.Eu].url
129 Bytes
56.6 - EDABasic Stats/[FreeTutorials.Eu].url
129 Bytes
56.7 - EDAFollower and following stats/[FreeTutorials.Eu].url
129 Bytes
56.8 - EDABinary Classification Task/[FreeTutorials.Eu].url
129 Bytes
56.9 - EDATrain and test split/[FreeTutorials.Eu].url
129 Bytes
57.1 - Introduction to Databases/[FreeTutorials.Eu].url
129 Bytes
57.10 - ORDER BY/[FreeTutorials.Eu].url
129 Bytes
57.11 - DISTINCT/[FreeTutorials.Eu].url
129 Bytes
57.12 - WHERE, Comparison operators, NULL/[FreeTutorials.Eu].url
129 Bytes
57.13 - Logical Operators/[FreeTutorials.Eu].url
129 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/[FreeTutorials.Eu].url
129 Bytes
57.15 - GROUP BY/[FreeTutorials.Eu].url
129 Bytes
57.16 - HAVING/[FreeTutorials.Eu].url
129 Bytes
57.17 - Order of keywords#/[FreeTutorials.Eu].url
129 Bytes
57.18 - Join and Natural Join/[FreeTutorials.Eu].url
129 Bytes
57.19 - Inner, Left, Right and Outer joins/[FreeTutorials.Eu].url
129 Bytes
57.2 - Why SQL/[FreeTutorials.Eu].url
129 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/[FreeTutorials.Eu].url
129 Bytes
57.21 - DMLINSERT/[FreeTutorials.Eu].url
129 Bytes
57.22 - DMLUPDATE , DELETE/[FreeTutorials.Eu].url
129 Bytes
57.23 - DDLCREATE TABLE/[FreeTutorials.Eu].url
129 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/[FreeTutorials.Eu].url
129 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/[FreeTutorials.Eu].url
129 Bytes
57.26 - Data Control Language GRANT, REVOKE/[FreeTutorials.Eu].url
129 Bytes
57.27 - Learning resources/[FreeTutorials.Eu].url
129 Bytes
57.3 - Execution of an SQL statement/[FreeTutorials.Eu].url
129 Bytes
57.4 - IMDB dataset/[FreeTutorials.Eu].url
129 Bytes
57.5 - Installing MySQL/[FreeTutorials.Eu].url
129 Bytes
57.6 - Load IMDB data/[FreeTutorials.Eu].url
129 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/[FreeTutorials.Eu].url
129 Bytes
57.8 - SELECT/[FreeTutorials.Eu].url
129 Bytes
57.9 - LIMIT, OFFSET/[FreeTutorials.Eu].url
129 Bytes
58.1 - AD-Click Predicition/[FreeTutorials.Eu].url
129 Bytes
59.1 - Revision Questions/[FreeTutorials.Eu].url
129 Bytes
59.2 - Questions/[FreeTutorials.Eu].url
129 Bytes
59.3 - External resources for Interview Questions/[FreeTutorials.Eu].url
129 Bytes
6.1 - Getting started with Matplotlib/[FreeTutorials.Eu].url
129 Bytes
7.1 - Getting started with pandas/[FreeTutorials.Eu].url
129 Bytes
7.2 - Data Frame Basics/[FreeTutorials.Eu].url
129 Bytes
7.3 - Key Operations on Data Frames/[FreeTutorials.Eu].url
129 Bytes
8.1 - Space and Time Complexity Find largest number in a list/[FreeTutorials.Eu].url
129 Bytes
8.2 - Binary search/[FreeTutorials.Eu].url
129 Bytes
8.3 - Find elements common in two lists/[FreeTutorials.Eu].url
129 Bytes
8.4 - Find elements common in two lists using a HashtableDict/[FreeTutorials.Eu].url
129 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/[FreeTutorials.Eu].url
129 Bytes
9.10 - Percentiles and Quantiles/[FreeTutorials.Eu].url
129 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/[FreeTutorials.Eu].url
129 Bytes
9.12 - Box-plot with Whiskers/[FreeTutorials.Eu].url
129 Bytes
9.13 - Violin Plots/[FreeTutorials.Eu].url
129 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/[FreeTutorials.Eu].url
129 Bytes
9.15 - Multivariate Probability Density, Contour Plot/[FreeTutorials.Eu].url
129 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/[FreeTutorials.Eu].url
129 Bytes
9.2 - 3D scatter plot/[FreeTutorials.Eu].url
129 Bytes
9.3 - Pair plots/[FreeTutorials.Eu].url
129 Bytes
9.4 - Limitations of Pair Plots/[FreeTutorials.Eu].url
129 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/[FreeTutorials.Eu].url
129 Bytes
9.6 - Univariate Analysis using PDF/[FreeTutorials.Eu].url
129 Bytes
9.7 - CDF(Cumulative Distribution Function)/[FreeTutorials.Eu].url
129 Bytes
9.8 - Mean, Variance and Standard Deviation/[FreeTutorials.Eu].url
129 Bytes
9.9 - Median/[FreeTutorials.Eu].url
129 Bytes
[FreeTutorials.Eu].url
129 Bytes
1.1 - How to Learn from Appliedaicourse/FTUApps.com website coming soon.txt
94 Bytes
1.2 - How the Job Guarantee program works/FTUApps.com website coming soon.txt
94 Bytes
10.1 - Why learn it/FTUApps.com website coming soon.txt
94 Bytes
10.10 - Hyper Cube,Hyper Cuboid/FTUApps.com website coming soon.txt
94 Bytes
10.11 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
10.2 - Introduction to Vectors(2-D, 3-D, n-D) , Row Vector and Column Vector/FTUApps.com website coming soon.txt
94 Bytes
10.3 - Dot Product and Angle between 2 Vectors/FTUApps.com website coming soon.txt
94 Bytes
10.4 - Projection and Unit Vector/FTUApps.com website coming soon.txt
94 Bytes
10.5 - Equation of a line (2-D), Plane(3-D) and Hyperplane (n-D), Plane Passing through origin, Normal to a Plane/FTUApps.com website coming soon.txt
94 Bytes
10.6 - Distance of a point from a PlaneHyperplane, Half-Spaces/FTUApps.com website coming soon.txt
94 Bytes
10.7 - Equation of a Circle (2-D), Sphere (3-D) and Hypersphere (n-D)/FTUApps.com website coming soon.txt
94 Bytes
10.8 - Equation of an Ellipse (2-D), Ellipsoid (3-D) and Hyperellipsoid (n-D)/FTUApps.com website coming soon.txt
94 Bytes
10.9 - Square ,Rectangle/FTUApps.com website coming soon.txt
94 Bytes
11.1 - Introduction to Probability and Statistics/FTUApps.com website coming soon.txt
94 Bytes
11.10 - How distributions are used/FTUApps.com website coming soon.txt
94 Bytes
11.11 - Chebyshev’s inequality/FTUApps.com website coming soon.txt
94 Bytes
11.12 - Discrete and Continuous Uniform distributions/FTUApps.com website coming soon.txt
94 Bytes
11.13 - How to randomly sample data points (Uniform Distribution)/FTUApps.com website coming soon.txt
94 Bytes
11.14 - Bernoulli and Binomial Distribution/FTUApps.com website coming soon.txt
94 Bytes
11.15 - Log Normal Distribution/FTUApps.com website coming soon.txt
94 Bytes
11.16 - Power law distribution/FTUApps.com website coming soon.txt
94 Bytes
11.17 - Box cox transform/FTUApps.com website coming soon.txt
94 Bytes
11.18 - Applications of non-gaussian distributions/FTUApps.com website coming soon.txt
94 Bytes
11.19 - Co-variance/FTUApps.com website coming soon.txt
94 Bytes
11.2 - Population and Sample/FTUApps.com website coming soon.txt
94 Bytes
11.20 - Pearson Correlation Coefficient/FTUApps.com website coming soon.txt
94 Bytes
11.21 - Spearman Rank Correlation Coefficient/FTUApps.com website coming soon.txt
94 Bytes
11.22 - Correlation vs Causation/FTUApps.com website coming soon.txt
94 Bytes
11.23 - How to use correlations/FTUApps.com website coming soon.txt
94 Bytes
11.24 - Confidence interval (C.I) Introduction/FTUApps.com website coming soon.txt
94 Bytes
11.25 - Computing confidence interval given the underlying distribution/FTUApps.com website coming soon.txt
94 Bytes
11.26 - C.I for mean of a normal random variable/FTUApps.com website coming soon.txt
94 Bytes
11.27 - Confidence interval using bootstrapping/FTUApps.com website coming soon.txt
94 Bytes
11.28 - Hypothesis testing methodology, Null-hypothesis, p-value/FTUApps.com website coming soon.txt
94 Bytes
11.29 - Hypothesis Testing Intution with coin toss example/FTUApps.com website coming soon.txt
94 Bytes
11.3 - GaussianNormal Distribution and its PDF(Probability Density Function)/FTUApps.com website coming soon.txt
94 Bytes
11.30 - Resampling and permutation test/FTUApps.com website coming soon.txt
94 Bytes
11.31 - K-S Test for similarity of two distributions/FTUApps.com website coming soon.txt
94 Bytes
11.32 - Code Snippet K-S Test/FTUApps.com website coming soon.txt
94 Bytes
11.33 - Hypothesis testing another example/FTUApps.com website coming soon.txt
94 Bytes
11.34 - Resampling and Permutation test another example/FTUApps.com website coming soon.txt
94 Bytes
11.35 - How to use hypothesis testing/FTUApps.com website coming soon.txt
94 Bytes
11.36 - Proportional Sampling/FTUApps.com website coming soon.txt
94 Bytes
11.37 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
11.4 - CDF(Cumulative Distribution function) of GaussianNormal distribution/FTUApps.com website coming soon.txt
94 Bytes
11.5 - Symmetric distribution, Skewness and Kurtosis/FTUApps.com website coming soon.txt
94 Bytes
11.6 - Standard normal variate (Z) and standardization/FTUApps.com website coming soon.txt
94 Bytes
11.7 - Kernel density estimation/FTUApps.com website coming soon.txt
94 Bytes
11.8 - Sampling distribution & Central Limit theorem/FTUApps.com website coming soon.txt
94 Bytes
11.9 - Q-Q plotHow to test if a random variable is normally distributed or not/FTUApps.com website coming soon.txt
94 Bytes
12.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
13.1 - What is Dimensionality reduction/FTUApps.com website coming soon.txt
94 Bytes
13.10 - Code to Load MNIST Data Set/FTUApps.com website coming soon.txt
94 Bytes
13.2 - Row Vector and Column Vector/FTUApps.com website coming soon.txt
94 Bytes
13.3 - How to represent a data set/FTUApps.com website coming soon.txt
94 Bytes
13.4 - How to represent a dataset as a Matrix/FTUApps.com website coming soon.txt
94 Bytes
13.5 - Data Preprocessing Feature Normalisation/FTUApps.com website coming soon.txt
94 Bytes
13.6 - Mean of a data matrix/FTUApps.com website coming soon.txt
94 Bytes
13.7 - Data Preprocessing Column Standardization/FTUApps.com website coming soon.txt
94 Bytes
13.8 - Co-variance of a Data Matrix/FTUApps.com website coming soon.txt
94 Bytes
13.9 - MNIST dataset (784 dimensional)/FTUApps.com website coming soon.txt
94 Bytes
14.1 - Why learn PCA/FTUApps.com website coming soon.txt
94 Bytes
14.10 - PCA for dimensionality reduction (not-visualization)/FTUApps.com website coming soon.txt
94 Bytes
14.2 - Geometric intuition of PCA/FTUApps.com website coming soon.txt
94 Bytes
14.3 - Mathematical objective function of PCA/FTUApps.com website coming soon.txt
94 Bytes
14.4 - Alternative formulation of PCA Distance minimization/FTUApps.com website coming soon.txt
94 Bytes
14.5 - Eigen values and Eigen vectors (PCA) Dimensionality reduction/FTUApps.com website coming soon.txt
94 Bytes
14.6 - PCA for Dimensionality Reduction and Visualization/FTUApps.com website coming soon.txt
94 Bytes
14.7 - Visualize MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
14.8 - Limitations of PCA/FTUApps.com website coming soon.txt
94 Bytes
14.9 - PCA Code example/FTUApps.com website coming soon.txt
94 Bytes
15.1 - What is t-SNE/FTUApps.com website coming soon.txt
94 Bytes
15.2 - Neighborhood of a point, Embedding/FTUApps.com website coming soon.txt
94 Bytes
15.3 - Geometric intuition of t-SNE/FTUApps.com website coming soon.txt
94 Bytes
15.4 - Crowding Problem/FTUApps.com website coming soon.txt
94 Bytes
15.5 - How to apply t-SNE and interpret its output/FTUApps.com website coming soon.txt
94 Bytes
15.6 - t-SNE on MNIST/FTUApps.com website coming soon.txt
94 Bytes
15.7 - Code example of t-SNE/FTUApps.com website coming soon.txt
94 Bytes
15.8 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
16.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
17.1 - Dataset overview Amazon Fine Food reviews(EDA)/FTUApps.com website coming soon.txt
94 Bytes
17.10 - Avg-Word2Vec, tf-idf weighted Word2Vec/FTUApps.com website coming soon.txt
94 Bytes
17.11 - Bag of Words( Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.12 - Text Preprocessing( Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.13 - Bi-Grams and n-grams (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.14 - TF-IDF (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.15 - Word2Vec (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.16 - Avg-Word2Vec and TFIDF-Word2Vec (Code Sample)/FTUApps.com website coming soon.txt
94 Bytes
17.17 - Assignment-2 Apply t-SNE/FTUApps.com website coming soon.txt
94 Bytes
17.2 - Data Cleaning Deduplication/FTUApps.com website coming soon.txt
94 Bytes
17.3 - Why convert text to a vector/FTUApps.com website coming soon.txt
94 Bytes
17.4 - Bag of Words (BoW)/FTUApps.com website coming soon.txt
94 Bytes
17.5 - Text Preprocessing Stemming/FTUApps.com website coming soon.txt
94 Bytes
17.6 - uni-gram, bi-gram, n-grams/FTUApps.com website coming soon.txt
94 Bytes
17.7 - tf-idf (term frequency- inverse document frequency)/FTUApps.com website coming soon.txt
94 Bytes
17.8 - Why use log in IDF/FTUApps.com website coming soon.txt
94 Bytes
17.9 - Word2Vec/FTUApps.com website coming soon.txt
94 Bytes
18.1 - How “Classification” works/FTUApps.com website coming soon.txt
94 Bytes
18.10 - KNN Limitations/FTUApps.com website coming soon.txt
94 Bytes
18.11 - Decision surface for K-NN as K changes/FTUApps.com website coming soon.txt
94 Bytes
18.12 - Overfitting and Underfitting/FTUApps.com website coming soon.txt
94 Bytes
18.13 - Need for Cross validation/FTUApps.com website coming soon.txt
94 Bytes
18.14 - K-fold cross validation/FTUApps.com website coming soon.txt
94 Bytes
18.15 - Visualizing train, validation and test datasets/FTUApps.com website coming soon.txt
94 Bytes
18.16 - How to determine overfitting and underfitting/FTUApps.com website coming soon.txt
94 Bytes
18.17 - Time based splitting/FTUApps.com website coming soon.txt
94 Bytes
18.18 - k-NN for regression/FTUApps.com website coming soon.txt
94 Bytes
18.19 - Weighted k-NN/FTUApps.com website coming soon.txt
94 Bytes
18.2 - Data matrix notation/FTUApps.com website coming soon.txt
94 Bytes
18.20 - Voronoi diagram/FTUApps.com website coming soon.txt
94 Bytes
18.21 - Binary search tree/FTUApps.com website coming soon.txt
94 Bytes
18.22 - How to build a kd-tree/FTUApps.com website coming soon.txt
94 Bytes
18.23 - Find nearest neighbours using kd-tree/FTUApps.com website coming soon.txt
94 Bytes
18.24 - Limitations of Kd tree/FTUApps.com website coming soon.txt
94 Bytes
18.25 - Extensions/FTUApps.com website coming soon.txt
94 Bytes
18.26 - Hashing vs LSH/FTUApps.com website coming soon.txt
94 Bytes
18.27 - LSH for cosine similarity/FTUApps.com website coming soon.txt
94 Bytes
18.28 - LSH for euclidean distance/FTUApps.com website coming soon.txt
94 Bytes
18.29 - Probabilistic class label/FTUApps.com website coming soon.txt
94 Bytes
18.3 - Classification vs Regression (examples)/FTUApps.com website coming soon.txt
94 Bytes
18.30 - Code SampleDecision boundary/FTUApps.com website coming soon.txt
94 Bytes
18.31 - Code SampleCross Validation/FTUApps.com website coming soon.txt
94 Bytes
18.32 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
18.4 - K-Nearest Neighbours Geometric intuition with a toy example/FTUApps.com website coming soon.txt
94 Bytes
18.5 - Failure cases of KNN/FTUApps.com website coming soon.txt
94 Bytes
18.6 - Distance measures Euclidean(L2) , Manhattan(L1), Minkowski, Hamming/FTUApps.com website coming soon.txt
94 Bytes
18.7 - Cosine Distance & Cosine Similarity/FTUApps.com website coming soon.txt
94 Bytes
18.8 - How to measure the effectiveness of k-NN/FTUApps.com website coming soon.txt
94 Bytes
18.9 - TestEvaluation time and space complexity/FTUApps.com website coming soon.txt
94 Bytes
19.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
2.1 - Python, Anaconda and relevant packages installations/FTUApps.com website coming soon.txt
94 Bytes
2.10 - Control flow for loop/FTUApps.com website coming soon.txt
94 Bytes
2.11 - Control flow break and continue/FTUApps.com website coming soon.txt
94 Bytes
2.2 - Why learn Python/FTUApps.com website coming soon.txt
94 Bytes
2.3 - Keywords and identifiers/FTUApps.com website coming soon.txt
94 Bytes
2.4 - comments, indentation and statements/FTUApps.com website coming soon.txt
94 Bytes
2.5 - Variables and data types in Python/FTUApps.com website coming soon.txt
94 Bytes
2.6 - Standard Input and Output/FTUApps.com website coming soon.txt
94 Bytes
2.7 - Operators/FTUApps.com website coming soon.txt
94 Bytes
2.8 - Control flow if else/FTUApps.com website coming soon.txt
94 Bytes
2.9 - Control flow while loop/FTUApps.com website coming soon.txt
94 Bytes
20.1 - Introduction/FTUApps.com website coming soon.txt
94 Bytes
20.10 - Local reachability-density(A)/FTUApps.com website coming soon.txt
94 Bytes
20.11 - Local outlier Factor(A)/FTUApps.com website coming soon.txt
94 Bytes
20.12 - Impact of Scale & Column standardization/FTUApps.com website coming soon.txt
94 Bytes
20.13 - Interpretability/FTUApps.com website coming soon.txt
94 Bytes
20.14 - Feature Importance and Forward Feature selection/FTUApps.com website coming soon.txt
94 Bytes
20.15 - Handling categorical and numerical features/FTUApps.com website coming soon.txt
94 Bytes
20.16 - Handling missing values by imputation/FTUApps.com website coming soon.txt
94 Bytes
20.17 - curse of dimensionality/FTUApps.com website coming soon.txt
94 Bytes
20.18 - Bias-Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
20.19 - Intuitive understanding of bias-variance/FTUApps.com website coming soon.txt
94 Bytes
20.2 - Imbalanced vs balanced dataset/FTUApps.com website coming soon.txt
94 Bytes
20.20 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
20.21 - best and wrost case of algorithm/FTUApps.com website coming soon.txt
94 Bytes
20.3 - Multi-class classification/FTUApps.com website coming soon.txt
94 Bytes
20.4 - k-NN, given a distance or similarity matrix/FTUApps.com website coming soon.txt
94 Bytes
20.5 - Train and test set differences/FTUApps.com website coming soon.txt
94 Bytes
20.6 - Impact of outliers/FTUApps.com website coming soon.txt
94 Bytes
20.7 - Local outlier Factor (Simple solution Mean distance to Knn)/FTUApps.com website coming soon.txt
94 Bytes
20.8 - k distance/FTUApps.com website coming soon.txt
94 Bytes
20.9 - Reachability-Distance(A,B)/FTUApps.com website coming soon.txt
94 Bytes
21.1 - Accuracy/FTUApps.com website coming soon.txt
94 Bytes
21.10 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
21.2 - Confusion matrix, TPR, FPR, FNR, TNR/FTUApps.com website coming soon.txt
94 Bytes
21.3 - Precision and recall, F1-score/FTUApps.com website coming soon.txt
94 Bytes
21.4 - Receiver Operating Characteristic Curve (ROC) curve and AUC/FTUApps.com website coming soon.txt
94 Bytes
21.5 - Log-loss/FTUApps.com website coming soon.txt
94 Bytes
21.6 - R-SquaredCoefficient of determination/FTUApps.com website coming soon.txt
94 Bytes
21.7 - Median absolute deviation (MAD)/FTUApps.com website coming soon.txt
94 Bytes
21.8 - Distribution of errors/FTUApps.com website coming soon.txt
94 Bytes
21.9 - Assignment-3 Apply k-Nearest Neighbor/FTUApps.com website coming soon.txt
94 Bytes
22.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
23.1 - Conditional probability/FTUApps.com website coming soon.txt
94 Bytes
23.10 - Bias and Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
23.11 - Feature importance and interpretability/FTUApps.com website coming soon.txt
94 Bytes
23.12 - Imbalanced data/FTUApps.com website coming soon.txt
94 Bytes
23.13 - Outliers/FTUApps.com website coming soon.txt
94 Bytes
23.14 - Missing values/FTUApps.com website coming soon.txt
94 Bytes
23.15 - Handling Numerical features (Gaussian NB)/FTUApps.com website coming soon.txt
94 Bytes
23.16 - Multiclass classification/FTUApps.com website coming soon.txt
94 Bytes
23.17 - Similarity or Distance matrix/FTUApps.com website coming soon.txt
94 Bytes
23.18 - Large dimensionality/FTUApps.com website coming soon.txt
94 Bytes
23.19 - Best and worst cases/FTUApps.com website coming soon.txt
94 Bytes
23.2 - Independent vs Mutually exclusive events/FTUApps.com website coming soon.txt
94 Bytes
23.20 - Code example/FTUApps.com website coming soon.txt
94 Bytes
23.21 - Assignment-4 Apply Naive Bayes/FTUApps.com website coming soon.txt
94 Bytes
23.22 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
23.3 - Bayes Theorem with examples/FTUApps.com website coming soon.txt
94 Bytes
23.4 - Exercise problems on Bayes Theorem/FTUApps.com website coming soon.txt
94 Bytes
23.5 - Naive Bayes algorithm/FTUApps.com website coming soon.txt
94 Bytes
23.6 - Toy example Train and test stages/FTUApps.com website coming soon.txt
94 Bytes
23.7 - Naive Bayes on Text data/FTUApps.com website coming soon.txt
94 Bytes
23.8 - LaplaceAdditive Smoothing/FTUApps.com website coming soon.txt
94 Bytes
23.9 - Log-probabilities for numerical stability/FTUApps.com website coming soon.txt
94 Bytes
24.1 - Geometric intuition of Logistic Regression/FTUApps.com website coming soon.txt
94 Bytes
24.10 - Column Standardization/FTUApps.com website coming soon.txt
94 Bytes
24.11 - Feature importance and Model interpretability/FTUApps.com website coming soon.txt
94 Bytes
24.12 - Collinearity of features/FTUApps.com website coming soon.txt
94 Bytes
24.13 - TestRun time space and time complexity/FTUApps.com website coming soon.txt
94 Bytes
24.14 - Real world cases/FTUApps.com website coming soon.txt
94 Bytes
24.15 - Non-linearly separable data & feature engineering/FTUApps.com website coming soon.txt
94 Bytes
24.16 - Code sample Logistic regression, GridSearchCV, RandomSearchCV/FTUApps.com website coming soon.txt
94 Bytes
24.17 - Assignment-5 Apply Logistic Regression/FTUApps.com website coming soon.txt
94 Bytes
24.18 - Extensions to Generalized linear models/FTUApps.com website coming soon.txt
94 Bytes
24.2 - Sigmoid function Squashing/FTUApps.com website coming soon.txt
94 Bytes
24.3 - Mathematical formulation of Objective function/FTUApps.com website coming soon.txt
94 Bytes
24.4 - Weight vector/FTUApps.com website coming soon.txt
94 Bytes
24.5 - L2 Regularization Overfitting and Underfitting/FTUApps.com website coming soon.txt
94 Bytes
24.6 - L1 regularization and sparsity/FTUApps.com website coming soon.txt
94 Bytes
24.7 - Probabilistic Interpretation Gaussian Naive Bayes/FTUApps.com website coming soon.txt
94 Bytes
24.8 - Loss minimization interpretation/FTUApps.com website coming soon.txt
94 Bytes
24.9 - hyperparameters and random search/FTUApps.com website coming soon.txt
94 Bytes
25.1 - Geometric intuition of Linear Regression/FTUApps.com website coming soon.txt
94 Bytes
25.2 - Mathematical formulation/FTUApps.com website coming soon.txt
94 Bytes
25.3 - Real world Cases/FTUApps.com website coming soon.txt
94 Bytes
25.4 - Code sample for Linear Regression/FTUApps.com website coming soon.txt
94 Bytes
26.1 - Differentiation/FTUApps.com website coming soon.txt
94 Bytes
26.10 - Logistic regression formulation revisited/FTUApps.com website coming soon.txt
94 Bytes
26.11 - Why L1 regularization creates sparsity/FTUApps.com website coming soon.txt
94 Bytes
26.12 - Assignment 6 Implement SGD for linear regression/FTUApps.com website coming soon.txt
94 Bytes
26.13 - Revision questions/FTUApps.com website coming soon.txt
94 Bytes
26.2 - Online differentiation tools/FTUApps.com website coming soon.txt
94 Bytes
26.3 - Maxima and Minima/FTUApps.com website coming soon.txt
94 Bytes
26.4 - Vector calculus Grad/FTUApps.com website coming soon.txt
94 Bytes
26.5 - Gradient descent geometric intuition/FTUApps.com website coming soon.txt
94 Bytes
26.6 - Learning rate/FTUApps.com website coming soon.txt
94 Bytes
26.7 - Gradient descent for linear regression/FTUApps.com website coming soon.txt
94 Bytes
26.8 - SGD algorithm/FTUApps.com website coming soon.txt
94 Bytes
26.9 - Constrained Optimization & PCA/FTUApps.com website coming soon.txt
94 Bytes
27.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
28.1 - Geometric Intution/FTUApps.com website coming soon.txt
94 Bytes
28.10 - Train and run time complexities/FTUApps.com website coming soon.txt
94 Bytes
28.11 - nu-SVM control errors and support vectors/FTUApps.com website coming soon.txt
94 Bytes
28.12 - SVM Regression/FTUApps.com website coming soon.txt
94 Bytes
28.13 - Cases/FTUApps.com website coming soon.txt
94 Bytes
28.14 - Code Sample/FTUApps.com website coming soon.txt
94 Bytes
28.15 - Assignment-7 Apply SVM/FTUApps.com website coming soon.txt
94 Bytes
28.16 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
28.2 - Mathematical derivation/FTUApps.com website coming soon.txt
94 Bytes
28.3 - Why we take values +1 and and -1 for Support vector planes/FTUApps.com website coming soon.txt
94 Bytes
28.4 - Loss function (Hinge Loss) based interpretation/FTUApps.com website coming soon.txt
94 Bytes
28.5 - Dual form of SVM formulation/FTUApps.com website coming soon.txt
94 Bytes
28.6 - kernel trick/FTUApps.com website coming soon.txt
94 Bytes
28.7 - Polynomial Kernel/FTUApps.com website coming soon.txt
94 Bytes
28.8 - RBF-Kernel/FTUApps.com website coming soon.txt
94 Bytes
28.9 - Domain specific Kernels/FTUApps.com website coming soon.txt
94 Bytes
29.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
3.1 - Lists/FTUApps.com website coming soon.txt
94 Bytes
3.2 - Tuples part 1/FTUApps.com website coming soon.txt
94 Bytes
3.3 - Tuples part-2/FTUApps.com website coming soon.txt
94 Bytes
3.4 - Sets/FTUApps.com website coming soon.txt
94 Bytes
3.5 - Dictionary/FTUApps.com website coming soon.txt
94 Bytes
3.6 - Strings/FTUApps.com website coming soon.txt
94 Bytes
30.1 - Geometric Intuition of decision tree Axis parallel hyperplanes/FTUApps.com website coming soon.txt
94 Bytes
30.10 - Overfitting and Underfitting/FTUApps.com website coming soon.txt
94 Bytes
30.11 - Train and Run time complexity/FTUApps.com website coming soon.txt
94 Bytes
30.12 - Regression using Decision Trees/FTUApps.com website coming soon.txt
94 Bytes
30.13 - Cases/FTUApps.com website coming soon.txt
94 Bytes
30.14 - Code Samples/FTUApps.com website coming soon.txt
94 Bytes
30.15 - Assignment-8 Apply Decision Trees/FTUApps.com website coming soon.txt
94 Bytes
30.16 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
30.2 - Sample Decision tree/FTUApps.com website coming soon.txt
94 Bytes
30.3 - Building a decision TreeEntropy/FTUApps.com website coming soon.txt
94 Bytes
30.4 - Building a decision TreeInformation Gain/FTUApps.com website coming soon.txt
94 Bytes
30.5 - Building a decision Tree Gini Impurity/FTUApps.com website coming soon.txt
94 Bytes
30.6 - Building a decision Tree Constructing a DT/FTUApps.com website coming soon.txt
94 Bytes
30.7 - Building a decision Tree Splitting numerical features/FTUApps.com website coming soon.txt
94 Bytes
30.8 - Feature standardization/FTUApps.com website coming soon.txt
94 Bytes
30.9 - Building a decision TreeCategorical features with many possible values/FTUApps.com website coming soon.txt
94 Bytes
31.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
32.1 - What are ensembles/FTUApps.com website coming soon.txt
94 Bytes
32.10 - Residuals, Loss functions and gradients/FTUApps.com website coming soon.txt
94 Bytes
32.11 - Gradient Boosting/FTUApps.com website coming soon.txt
94 Bytes
32.12 - Regularization by Shrinkage/FTUApps.com website coming soon.txt
94 Bytes
32.13 - Train and Run time complexity/FTUApps.com website coming soon.txt
94 Bytes
32.14 - XGBoost Boosting + Randomization/FTUApps.com website coming soon.txt
94 Bytes
32.15 - AdaBoost geometric intuition/FTUApps.com website coming soon.txt
94 Bytes
32.16 - Stacking models/FTUApps.com website coming soon.txt
94 Bytes
32.17 - Cascading classifiers/FTUApps.com website coming soon.txt
94 Bytes
32.18 - Kaggle competitions vs Real world/FTUApps.com website coming soon.txt
94 Bytes
32.19 - Assignment-9 Apply Random Forests & GBDT/FTUApps.com website coming soon.txt
94 Bytes
32.2 - Bootstrapped Aggregation (Bagging) Intuition/FTUApps.com website coming soon.txt
94 Bytes
32.20 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
32.3 - Random Forest and their construction/FTUApps.com website coming soon.txt
94 Bytes
32.4 - Bias-Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
32.5 - Train and run time complexity/FTUApps.com website coming soon.txt
94 Bytes
32.6 - BaggingCode Sample/FTUApps.com website coming soon.txt
94 Bytes
32.7 - Extremely randomized trees/FTUApps.com website coming soon.txt
94 Bytes
32.8 - Random Tree Cases/FTUApps.com website coming soon.txt
94 Bytes
32.9 - Boosting Intuition/FTUApps.com website coming soon.txt
94 Bytes
33.1 - Introduction/FTUApps.com website coming soon.txt
94 Bytes
33.10 - Indicator variables/FTUApps.com website coming soon.txt
94 Bytes
33.11 - Feature binning/FTUApps.com website coming soon.txt
94 Bytes
33.12 - Interaction variables/FTUApps.com website coming soon.txt
94 Bytes
33.13 - Mathematical transforms/FTUApps.com website coming soon.txt
94 Bytes
33.14 - Model specific featurizations/FTUApps.com website coming soon.txt
94 Bytes
33.15 - Feature orthogonality/FTUApps.com website coming soon.txt
94 Bytes
33.16 - Domain specific featurizations/FTUApps.com website coming soon.txt
94 Bytes
33.17 - Feature slicing/FTUApps.com website coming soon.txt
94 Bytes
33.18 - Kaggle Winners solutions/FTUApps.com website coming soon.txt
94 Bytes
33.2 - Moving window for Time Series Data/FTUApps.com website coming soon.txt
94 Bytes
33.3 - Fourier decomposition/FTUApps.com website coming soon.txt
94 Bytes
33.4 - Deep learning features LSTM/FTUApps.com website coming soon.txt
94 Bytes
33.5 - Image histogram/FTUApps.com website coming soon.txt
94 Bytes
33.6 - Keypoints SIFT/FTUApps.com website coming soon.txt
94 Bytes
33.7 - Deep learning features CNN/FTUApps.com website coming soon.txt
94 Bytes
33.8 - Relational data/FTUApps.com website coming soon.txt
94 Bytes
33.9 - Graph data/FTUApps.com website coming soon.txt
94 Bytes
34.1 - Calibration of ModelsNeed for calibration/FTUApps.com website coming soon.txt
94 Bytes
34.10 - AB testing/FTUApps.com website coming soon.txt
94 Bytes
34.11 - Data Science Life cycle/FTUApps.com website coming soon.txt
94 Bytes
34.12 - VC dimension/FTUApps.com website coming soon.txt
94 Bytes
34.2 - Productionization and deployment of Machine Learning Models/FTUApps.com website coming soon.txt
94 Bytes
34.3 - Calibration Plots/FTUApps.com website coming soon.txt
94 Bytes
34.4 - Platt’s CalibrationScaling/FTUApps.com website coming soon.txt
94 Bytes
34.5 - Isotonic Regression/FTUApps.com website coming soon.txt
94 Bytes
34.6 - Code Samples/FTUApps.com website coming soon.txt
94 Bytes
34.7 - Modeling in the presence of outliers RANSAC/FTUApps.com website coming soon.txt
94 Bytes
34.8 - Productionizing models/FTUApps.com website coming soon.txt
94 Bytes
34.9 - Retraining models periodically/FTUApps.com website coming soon.txt
94 Bytes
35.1 - What is Clustering/FTUApps.com website coming soon.txt
94 Bytes
35.10 - K-Medoids/FTUApps.com website coming soon.txt
94 Bytes
35.11 - Determining the right K/FTUApps.com website coming soon.txt
94 Bytes
35.12 - Code Samples/FTUApps.com website coming soon.txt
94 Bytes
35.13 - Time and space complexity/FTUApps.com website coming soon.txt
94 Bytes
35.14 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/FTUApps.com website coming soon.txt
94 Bytes
35.2 - Unsupervised learning/FTUApps.com website coming soon.txt
94 Bytes
35.3 - Applications/FTUApps.com website coming soon.txt
94 Bytes
35.4 - Metrics for Clustering/FTUApps.com website coming soon.txt
94 Bytes
35.5 - K-Means Geometric intuition, Centroids/FTUApps.com website coming soon.txt
94 Bytes
35.6 - K-Means Mathematical formulation Objective function/FTUApps.com website coming soon.txt
94 Bytes
35.7 - K-Means Algorithm/FTUApps.com website coming soon.txt
94 Bytes
35.8 - How to initialize K-Means++/FTUApps.com website coming soon.txt
94 Bytes
35.9 - Failure casesLimitations/FTUApps.com website coming soon.txt
94 Bytes
36.1 - Agglomerative & Divisive, Dendrograms/FTUApps.com website coming soon.txt
94 Bytes
36.2 - Agglomerative Clustering/FTUApps.com website coming soon.txt
94 Bytes
36.3 - Proximity methods Advantages and Limitations/FTUApps.com website coming soon.txt
94 Bytes
36.4 - Time and Space Complexity/FTUApps.com website coming soon.txt
94 Bytes
36.5 - Limitations of Hierarchical Clustering/FTUApps.com website coming soon.txt
94 Bytes
36.6 - Code sample/FTUApps.com website coming soon.txt
94 Bytes
36.7 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/FTUApps.com website coming soon.txt
94 Bytes
37.1 - Density based clustering/FTUApps.com website coming soon.txt
94 Bytes
37.10 - Assignment-10 Apply K-means, Agglomerative, DBSCAN clustering algorithms/FTUApps.com website coming soon.txt
94 Bytes
37.11 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
37.2 - MinPts and Eps Density/FTUApps.com website coming soon.txt
94 Bytes
37.3 - Core, Border and Noise points/FTUApps.com website coming soon.txt
94 Bytes
37.4 - Density edge and Density connected points/FTUApps.com website coming soon.txt
94 Bytes
37.5 - DBSCAN Algorithm/FTUApps.com website coming soon.txt
94 Bytes
37.6 - Hyper Parameters MinPts and Eps/FTUApps.com website coming soon.txt
94 Bytes
37.7 - Advantages and Limitations of DBSCAN/FTUApps.com website coming soon.txt
94 Bytes
37.8 - Time and Space Complexity/FTUApps.com website coming soon.txt
94 Bytes
37.9 - Code samples/FTUApps.com website coming soon.txt
94 Bytes
38.1 - Problem formulation Movie reviews/FTUApps.com website coming soon.txt
94 Bytes
38.10 - Matrix Factorization for recommender systems Netflix Prize Solution/FTUApps.com website coming soon.txt
94 Bytes
38.11 - Cold Start problem/FTUApps.com website coming soon.txt
94 Bytes
38.12 - Word vectors as MF/FTUApps.com website coming soon.txt
94 Bytes
38.13 - Eigen-Faces/FTUApps.com website coming soon.txt
94 Bytes
38.14 - Code example/FTUApps.com website coming soon.txt
94 Bytes
38.15 - Assignment-11 Apply Truncated SVD/FTUApps.com website coming soon.txt
94 Bytes
38.16 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
38.2 - Content based vs Collaborative Filtering/FTUApps.com website coming soon.txt
94 Bytes
38.3 - Similarity based Algorithms/FTUApps.com website coming soon.txt
94 Bytes
38.4 - Matrix Factorization PCA, SVD/FTUApps.com website coming soon.txt
94 Bytes
38.5 - Matrix Factorization NMF/FTUApps.com website coming soon.txt
94 Bytes
38.6 - Matrix Factorization for Collaborative filtering/FTUApps.com website coming soon.txt
94 Bytes
38.7 - Matrix Factorization for feature engineering/FTUApps.com website coming soon.txt
94 Bytes
38.8 - Clustering as MF/FTUApps.com website coming soon.txt
94 Bytes
38.9 - Hyperparameter tuning/FTUApps.com website coming soon.txt
94 Bytes
39.1 - Questions & Answers/FTUApps.com website coming soon.txt
94 Bytes
4.1 - Introduction/FTUApps.com website coming soon.txt
94 Bytes
4.10 - Debugging Python/FTUApps.com website coming soon.txt
94 Bytes
4.2 - Types of functions/FTUApps.com website coming soon.txt
94 Bytes
4.3 - Function arguments/FTUApps.com website coming soon.txt
94 Bytes
4.4 - Recursive functions/FTUApps.com website coming soon.txt
94 Bytes
4.5 - Lambda functions/FTUApps.com website coming soon.txt
94 Bytes
4.6 - Modules/FTUApps.com website coming soon.txt
94 Bytes
4.7 - Packages/FTUApps.com website coming soon.txt
94 Bytes
4.8 - File Handling/FTUApps.com website coming soon.txt
94 Bytes
4.9 - Exception Handling/FTUApps.com website coming soon.txt
94 Bytes
40.1 - BusinessReal world problem/FTUApps.com website coming soon.txt
94 Bytes
40.10 - Data Modeling Multi label Classification/FTUApps.com website coming soon.txt
94 Bytes
40.11 - Data preparation/FTUApps.com website coming soon.txt
94 Bytes
40.12 - Train-Test Split/FTUApps.com website coming soon.txt
94 Bytes
40.13 - Featurization/FTUApps.com website coming soon.txt
94 Bytes
40.14 - Logistic regression One VS Rest/FTUApps.com website coming soon.txt
94 Bytes
40.15 - Sampling data and tags+Weighted models/FTUApps.com website coming soon.txt
94 Bytes
40.16 - Logistic regression revisited/FTUApps.com website coming soon.txt
94 Bytes
40.17 - Why not use advanced techniques/FTUApps.com website coming soon.txt
94 Bytes
40.18 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
40.2 - Business objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
40.3 - Mapping to an ML problem Data overview/FTUApps.com website coming soon.txt
94 Bytes
40.4 - Mapping to an ML problemML problem formulation/FTUApps.com website coming soon.txt
94 Bytes
40.5 - Mapping to an ML problemPerformance metrics/FTUApps.com website coming soon.txt
94 Bytes
40.6 - Hamming loss/FTUApps.com website coming soon.txt
94 Bytes
40.7 - EDAData Loading/FTUApps.com website coming soon.txt
94 Bytes
40.8 - EDAAnalysis of tags/FTUApps.com website coming soon.txt
94 Bytes
40.9 - EDAData Preprocessing/FTUApps.com website coming soon.txt
94 Bytes
41.1 - BusinessReal world problem Problem definition/FTUApps.com website coming soon.txt
94 Bytes
41.10 - EDA Feature analysis/FTUApps.com website coming soon.txt
94 Bytes
41.11 - EDA Data Visualization T-SNE/FTUApps.com website coming soon.txt
94 Bytes
41.12 - EDA TF-IDF weighted Word2Vec featurization/FTUApps.com website coming soon.txt
94 Bytes
41.13 - ML Models Loading Data/FTUApps.com website coming soon.txt
94 Bytes
41.14 - ML Models Random Model/FTUApps.com website coming soon.txt
94 Bytes
41.15 - ML Models Logistic Regression and Linear SVM/FTUApps.com website coming soon.txt
94 Bytes
41.16 - ML Models XGBoost/FTUApps.com website coming soon.txt
94 Bytes
41.17 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
41.2 - Business objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
41.3 - Mapping to an ML problem Data overview/FTUApps.com website coming soon.txt
94 Bytes
41.4 - Mapping to an ML problem ML problem and performance metric/FTUApps.com website coming soon.txt
94 Bytes
41.5 - Mapping to an ML problem Train-test split/FTUApps.com website coming soon.txt
94 Bytes
41.6 - EDA Basic Statistics/FTUApps.com website coming soon.txt
94 Bytes
41.7 - EDA Basic Feature Extraction/FTUApps.com website coming soon.txt
94 Bytes
41.8 - EDA Text Preprocessing/FTUApps.com website coming soon.txt
94 Bytes
41.9 - EDA Advanced Feature Extraction/FTUApps.com website coming soon.txt
94 Bytes
42.1 - Problem Statement Recommend similar apparel products in e-commerce using product descriptions and Images/FTUApps.com website coming soon.txt
94 Bytes
42.10 - Text Pre-Processing Tokenization and Stop-word removal/FTUApps.com website coming soon.txt
94 Bytes
42.11 - Stemming/FTUApps.com website coming soon.txt
94 Bytes
42.12 - Text based product similarity Converting text to an n-D vector bag of words/FTUApps.com website coming soon.txt
94 Bytes
42.13 - Code for bag of words based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.14 - TF-IDF featurizing text based on word-importance/FTUApps.com website coming soon.txt
94 Bytes
42.15 - Code for TF-IDF based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.16 - Code for IDF based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.17 - Text Semantics based product similarity Word2Vec(featurizing text based on semantic similarity)/FTUApps.com website coming soon.txt
94 Bytes
42.18 - Code for Average Word2Vec product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.19 - TF-IDF weighted Word2Vec/FTUApps.com website coming soon.txt
94 Bytes
42.2 - Plan of action/FTUApps.com website coming soon.txt
94 Bytes
42.20 - Code for IDF weighted Word2Vec product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.21 - Weighted similarity using brand and color/FTUApps.com website coming soon.txt
94 Bytes
42.22 - Code for weighted similarity/FTUApps.com website coming soon.txt
94 Bytes
42.23 - Building a real world solution/FTUApps.com website coming soon.txt
94 Bytes
42.24 - Deep learning based visual product similarityConvNets How to featurize an image edges, shapes, parts/FTUApps.com website coming soon.txt
94 Bytes
42.25 - Using Keras + Tensorflow to extract features/FTUApps.com website coming soon.txt
94 Bytes
42.26 - Visual similarity based product similarity/FTUApps.com website coming soon.txt
94 Bytes
42.27 - Measuring goodness of our solution AB testing/FTUApps.com website coming soon.txt
94 Bytes
42.28 - Exercise Build a weighted Nearest neighbor model using Visual, Text, Brand and Color/FTUApps.com website coming soon.txt
94 Bytes
42.3 - Amazon product advertising API/FTUApps.com website coming soon.txt
94 Bytes
42.4 - Data folders and paths/FTUApps.com website coming soon.txt
94 Bytes
42.5 - Overview of the data and Terminology/FTUApps.com website coming soon.txt
94 Bytes
42.6 - Data cleaning and understandingMissing data in various features/FTUApps.com website coming soon.txt
94 Bytes
42.7 - Understand duplicate rows/FTUApps.com website coming soon.txt
94 Bytes
42.8 - Remove duplicates Part 1/FTUApps.com website coming soon.txt
94 Bytes
42.9 - Remove duplicates Part 2/FTUApps.com website coming soon.txt
94 Bytes
43.1 - Businessreal world problem Problem definition/FTUApps.com website coming soon.txt
94 Bytes
43.10 - ML models – using byte files only Random Model/FTUApps.com website coming soon.txt
94 Bytes
43.11 - k-NN/FTUApps.com website coming soon.txt
94 Bytes
43.12 - Logistic regression/FTUApps.com website coming soon.txt
94 Bytes
43.13 - Random Forest and Xgboost/FTUApps.com website coming soon.txt
94 Bytes
43.14 - ASM Files Feature extraction & Multiprocessing/FTUApps.com website coming soon.txt
94 Bytes
43.15 - File-size feature/FTUApps.com website coming soon.txt
94 Bytes
43.16 - Univariate analysis/FTUApps.com website coming soon.txt
94 Bytes
43.17 - t-SNE analysis/FTUApps.com website coming soon.txt
94 Bytes
43.18 - ML models on ASM file features/FTUApps.com website coming soon.txt
94 Bytes
43.19 - Models on all features t-SNE/FTUApps.com website coming soon.txt
94 Bytes
43.2 - Businessreal world problem Objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
43.20 - Models on all features RandomForest and Xgboost/FTUApps.com website coming soon.txt
94 Bytes
43.21 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
43.3 - Machine Learning problem mapping Data overview/FTUApps.com website coming soon.txt
94 Bytes
43.4 - Machine Learning problem mapping ML problem/FTUApps.com website coming soon.txt
94 Bytes
43.5 - Machine Learning problem mapping Train and test splitting/FTUApps.com website coming soon.txt
94 Bytes
43.6 - Exploratory Data Analysis Class distribution/FTUApps.com website coming soon.txt
94 Bytes
43.7 - Exploratory Data Analysis Feature extraction from byte files/FTUApps.com website coming soon.txt
94 Bytes
43.8 - Exploratory Data Analysis Multivariate analysis of features from byte files/FTUApps.com website coming soon.txt
94 Bytes
43.9 - Exploratory Data Analysis Train-Test class distribution/FTUApps.com website coming soon.txt
94 Bytes
44.1 - BusinessReal world problemProblem definition/FTUApps.com website coming soon.txt
94 Bytes
44.10 - Exploratory Data AnalysisCold start problem/FTUApps.com website coming soon.txt
94 Bytes
44.11 - Computing Similarity matricesUser-User similarity matrix/FTUApps.com website coming soon.txt
94 Bytes
44.12 - Computing Similarity matricesMovie-Movie similarity/FTUApps.com website coming soon.txt
94 Bytes
44.13 - Computing Similarity matricesDoes movie-movie similarity work/FTUApps.com website coming soon.txt
94 Bytes
44.14 - ML ModelsSurprise library/FTUApps.com website coming soon.txt
94 Bytes
44.15 - Overview of the modelling strategy/FTUApps.com website coming soon.txt
94 Bytes
44.16 - Data Sampling/FTUApps.com website coming soon.txt
94 Bytes
44.17 - Google drive with intermediate files/FTUApps.com website coming soon.txt
94 Bytes
44.18 - Featurizations for regression/FTUApps.com website coming soon.txt
94 Bytes
44.19 - Data transformation for Surprise/FTUApps.com website coming soon.txt
94 Bytes
44.2 - Objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
44.20 - Xgboost with 13 features/FTUApps.com website coming soon.txt
94 Bytes
44.21 - Surprise Baseline model/FTUApps.com website coming soon.txt
94 Bytes
44.22 - Xgboost + 13 features +Surprise baseline model/FTUApps.com website coming soon.txt
94 Bytes
44.23 - Surprise KNN predictors/FTUApps.com website coming soon.txt
94 Bytes
44.24 - Matrix Factorization models using Surprise/FTUApps.com website coming soon.txt
94 Bytes
44.25 - SVD ++ with implicit feedback/FTUApps.com website coming soon.txt
94 Bytes
44.26 - Final models with all features and predictors/FTUApps.com website coming soon.txt
94 Bytes
44.27 - Comparison between various models/FTUApps.com website coming soon.txt
94 Bytes
44.28 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
44.3 - Mapping to an ML problemData overview/FTUApps.com website coming soon.txt
94 Bytes
44.4 - Mapping to an ML problemML problem formulation/FTUApps.com website coming soon.txt
94 Bytes
44.5 - Exploratory Data AnalysisData preprocessing/FTUApps.com website coming soon.txt
94 Bytes
44.6 - Exploratory Data AnalysisTemporal Train-Test split/FTUApps.com website coming soon.txt
94 Bytes
44.7 - Exploratory Data AnalysisPreliminary data analysis/FTUApps.com website coming soon.txt
94 Bytes
44.8 - Exploratory Data AnalysisSparse matrix representation/FTUApps.com website coming soon.txt
94 Bytes
44.9 - Exploratory Data AnalysisAverage ratings for various slices/FTUApps.com website coming soon.txt
94 Bytes
45.1 - BusinessReal world problem Overview/FTUApps.com website coming soon.txt
94 Bytes
45.10 - Univariate AnalysisVariation Feature/FTUApps.com website coming soon.txt
94 Bytes
45.11 - Univariate AnalysisText feature/FTUApps.com website coming soon.txt
94 Bytes
45.12 - Machine Learning ModelsData preparation/FTUApps.com website coming soon.txt
94 Bytes
45.13 - Baseline Model Naive Bayes/FTUApps.com website coming soon.txt
94 Bytes
45.14 - K-Nearest Neighbors Classification/FTUApps.com website coming soon.txt
94 Bytes
45.15 - Logistic Regression with class balancing/FTUApps.com website coming soon.txt
94 Bytes
45.16 - Logistic Regression without class balancing/FTUApps.com website coming soon.txt
94 Bytes
45.17 - Linear-SVM/FTUApps.com website coming soon.txt
94 Bytes
45.18 - Random-Forest with one-hot encoded features/FTUApps.com website coming soon.txt
94 Bytes
45.19 - Random-Forest with response-coded features/FTUApps.com website coming soon.txt
94 Bytes
45.2 - Business objectives and constraints/FTUApps.com website coming soon.txt
94 Bytes
45.20 - Stacking Classifier/FTUApps.com website coming soon.txt
94 Bytes
45.21 - Majority Voting classifier/FTUApps.com website coming soon.txt
94 Bytes
45.22 - Assignments/FTUApps.com website coming soon.txt
94 Bytes
45.3 - ML problem formulation Data/FTUApps.com website coming soon.txt
94 Bytes
45.4 - ML problem formulation Mapping real world to ML problem/FTUApps.com website coming soon.txt
94 Bytes
45.4 - ML problem formulation Mapping real world to ML problem#/FTUApps.com website coming soon.txt
94 Bytes
45.5 - ML problem formulation Train, CV and Test data construction/FTUApps.com website coming soon.txt
94 Bytes
45.6 - Exploratory Data AnalysisReading data & preprocessing/FTUApps.com website coming soon.txt
94 Bytes
45.7 - Exploratory Data AnalysisDistribution of Class-labels/FTUApps.com website coming soon.txt
94 Bytes
45.8 - Exploratory Data Analysis “Random” Model/FTUApps.com website coming soon.txt
94 Bytes
45.9 - Univariate AnalysisGene feature/FTUApps.com website coming soon.txt
94 Bytes
46.1 - BusinessReal world problem Overview/FTUApps.com website coming soon.txt
94 Bytes
46.10 - Data Cleaning Speed/FTUApps.com website coming soon.txt
94 Bytes
46.11 - Data Cleaning Distance/FTUApps.com website coming soon.txt
94 Bytes
46.12 - Data Cleaning Fare/FTUApps.com website coming soon.txt
94 Bytes
46.13 - Data Cleaning Remove all outlierserroneous points/FTUApps.com website coming soon.txt
94 Bytes
46.14 - Data PreparationClusteringSegmentation/FTUApps.com website coming soon.txt
94 Bytes
46.15 - Data PreparationTime binning/FTUApps.com website coming soon.txt
94 Bytes
46.16 - Data PreparationSmoothing time-series data/FTUApps.com website coming soon.txt
94 Bytes
46.17 - Data PreparationSmoothing time-series data cont/FTUApps.com website coming soon.txt
94 Bytes
46.18 - Data Preparation Time series and Fourier transforms/FTUApps.com website coming soon.txt
94 Bytes
46.19 - Ratios and previous-time-bin values/FTUApps.com website coming soon.txt
94 Bytes
46.2 - Objectives and Constraints/FTUApps.com website coming soon.txt
94 Bytes
46.20 - Simple moving average/FTUApps.com website coming soon.txt
94 Bytes
46.21 - Weighted Moving average/FTUApps.com website coming soon.txt
94 Bytes
46.22 - Exponential weighted moving average/FTUApps.com website coming soon.txt
94 Bytes
46.23 - Results/FTUApps.com website coming soon.txt
94 Bytes
46.24 - Regression models Train-Test split & Features/FTUApps.com website coming soon.txt
94 Bytes
46.25 - Linear regression/FTUApps.com website coming soon.txt
94 Bytes
46.26 - Random Forest regression/FTUApps.com website coming soon.txt
94 Bytes
46.27 - Xgboost Regression/FTUApps.com website coming soon.txt
94 Bytes
46.28 - Model comparison/FTUApps.com website coming soon.txt
94 Bytes
46.29 - Assignment/FTUApps.com website coming soon.txt
94 Bytes
46.3 - Mapping to ML problem Data/FTUApps.com website coming soon.txt
94 Bytes
46.4 - Mapping to ML problem dask dataframes/FTUApps.com website coming soon.txt
94 Bytes
46.5 - Mapping to ML problem FieldsFeatures/FTUApps.com website coming soon.txt
94 Bytes
46.6 - Mapping to ML problem Time series forecastingRegression/FTUApps.com website coming soon.txt
94 Bytes
46.7 - Mapping to ML problem Performance metrics/FTUApps.com website coming soon.txt
94 Bytes
46.8 - Data Cleaning Latitude and Longitude data/FTUApps.com website coming soon.txt
94 Bytes
46.9 - Data Cleaning Trip Duration/FTUApps.com website coming soon.txt
94 Bytes
47.1 - History of Neural networks and Deep Learning/FTUApps.com website coming soon.txt
94 Bytes
47.10 - Backpropagation/FTUApps.com website coming soon.txt
94 Bytes
47.11 - Activation functions/FTUApps.com website coming soon.txt
94 Bytes
47.12 - Vanishing Gradient problem/FTUApps.com website coming soon.txt
94 Bytes
47.13 - Bias-Variance tradeoff/FTUApps.com website coming soon.txt
94 Bytes
47.14 - Decision surfaces Playground/FTUApps.com website coming soon.txt
94 Bytes
47.2 - How Biological Neurons work/FTUApps.com website coming soon.txt
94 Bytes
47.3 - Growth of biological neural networks/FTUApps.com website coming soon.txt
94 Bytes
47.4 - Diagrammatic representation Logistic Regression and Perceptron/FTUApps.com website coming soon.txt
94 Bytes
47.5 - Multi-Layered Perceptron (MLP)/FTUApps.com website coming soon.txt
94 Bytes
47.6 - Notation/FTUApps.com website coming soon.txt
94 Bytes
47.7 - Training a single-neuron model/FTUApps.com website coming soon.txt
94 Bytes
47.8 - Training an MLP Chain Rule/FTUApps.com website coming soon.txt
94 Bytes
47.9 - Training an MLPMemoization/FTUApps.com website coming soon.txt
94 Bytes
48.1 - Deep Multi-layer perceptrons1980s to 2010s/FTUApps.com website coming soon.txt
94 Bytes
48.10 - Nesterov Accelerated Gradient (NAG)/FTUApps.com website coming soon.txt
94 Bytes
48.11 - OptimizersAdaGrad/FTUApps.com website coming soon.txt
94 Bytes
48.12 - Optimizers Adadelta andRMSProp/FTUApps.com website coming soon.txt
94 Bytes
48.13 - Adam/FTUApps.com website coming soon.txt
94 Bytes
48.14 - Which algorithm to choose when/FTUApps.com website coming soon.txt
94 Bytes
48.15 - Gradient Checking and clipping/FTUApps.com website coming soon.txt
94 Bytes
48.16 - Softmax and Cross-entropy for multi-class classification/FTUApps.com website coming soon.txt
94 Bytes
48.17 - How to train a Deep MLP/FTUApps.com website coming soon.txt
94 Bytes
48.18 - Auto Encoders/FTUApps.com website coming soon.txt
94 Bytes
48.19 - Word2Vec CBOW/FTUApps.com website coming soon.txt
94 Bytes
48.2 - Dropout layers & Regularization/FTUApps.com website coming soon.txt
94 Bytes
48.20 - Word2Vec Skip-gram/FTUApps.com website coming soon.txt
94 Bytes
48.21 - Word2Vec Algorithmic Optimizations/FTUApps.com website coming soon.txt
94 Bytes
48.3 - Rectified Linear Units (ReLU)/FTUApps.com website coming soon.txt
94 Bytes
48.4 - Weight initialization/FTUApps.com website coming soon.txt
94 Bytes
48.5 - Batch Normalization/FTUApps.com website coming soon.txt
94 Bytes
48.6 - OptimizersHill-descent analogy in 2D/FTUApps.com website coming soon.txt
94 Bytes
48.7 - OptimizersHill descent in 3D and contours/FTUApps.com website coming soon.txt
94 Bytes
48.8 - SGD Recap/FTUApps.com website coming soon.txt
94 Bytes
48.9 - Batch SGD with momentum/FTUApps.com website coming soon.txt
94 Bytes
49.1 - Tensorflow and Keras overview/FTUApps.com website coming soon.txt
94 Bytes
49.10 - Model 3 Batch Normalization/FTUApps.com website coming soon.txt
94 Bytes
49.11 - Model 4 Dropout/FTUApps.com website coming soon.txt
94 Bytes
49.12 - MNIST classification in Keras/FTUApps.com website coming soon.txt
94 Bytes
49.13 - Hyperparameter tuning in Keras/FTUApps.com website coming soon.txt
94 Bytes
49.14 - Exercise Try different MLP architectures on MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
49.2 - GPU vs CPU for Deep Learning/FTUApps.com website coming soon.txt
94 Bytes
49.3 - Google Colaboratory/FTUApps.com website coming soon.txt
94 Bytes
49.4 - Install TensorFlow/FTUApps.com website coming soon.txt
94 Bytes
49.5 - Online documentation and tutorials/FTUApps.com website coming soon.txt
94 Bytes
49.6 - Softmax Classifier on MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
49.7 - MLP Initialization/FTUApps.com website coming soon.txt
94 Bytes
49.8 - Model 1 Sigmoid activation/FTUApps.com website coming soon.txt
94 Bytes
49.9 - Model 2 ReLU activation/FTUApps.com website coming soon.txt
94 Bytes
5.1 - Numpy Introduction/FTUApps.com website coming soon.txt
94 Bytes
5.2 - Numerical operations on Numpy/FTUApps.com website coming soon.txt
94 Bytes
50.1 - Biological inspiration Visual Cortex/FTUApps.com website coming soon.txt
94 Bytes
50.10 - Data Augmentation/FTUApps.com website coming soon.txt
94 Bytes
50.11 - Convolution Layers in Keras/FTUApps.com website coming soon.txt
94 Bytes
50.12 - AlexNet/FTUApps.com website coming soon.txt
94 Bytes
50.13 - VGGNet/FTUApps.com website coming soon.txt
94 Bytes
50.14 - Residual Network/FTUApps.com website coming soon.txt
94 Bytes
50.15 - Inception Network/FTUApps.com website coming soon.txt
94 Bytes
50.16 - What is Transfer learning/FTUApps.com website coming soon.txt
94 Bytes
50.17 - Code example Cats vs Dogs/FTUApps.com website coming soon.txt
94 Bytes
50.18 - Code Example MNIST dataset/FTUApps.com website coming soon.txt
94 Bytes
50.19 - Assignment Try various CNN networks on MNIST dataset#/FTUApps.com website coming soon.txt
94 Bytes
50.2 - ConvolutionEdge Detection on images/FTUApps.com website coming soon.txt
94 Bytes
50.3 - ConvolutionPadding and strides/FTUApps.com website coming soon.txt
94 Bytes
50.4 - Convolution over RGB images/FTUApps.com website coming soon.txt
94 Bytes
50.5 - Convolutional layer/FTUApps.com website coming soon.txt
94 Bytes
50.6 - Max-pooling/FTUApps.com website coming soon.txt
94 Bytes
50.7 - CNN Training Optimization/FTUApps.com website coming soon.txt
94 Bytes
50.8 - Example CNN LeNet [1998]/FTUApps.com website coming soon.txt
94 Bytes
50.9 - ImageNet dataset/FTUApps.com website coming soon.txt
94 Bytes
51.1 - Why RNNs/FTUApps.com website coming soon.txt
94 Bytes
51.10 - Code example IMDB Sentiment classification/FTUApps.com website coming soon.txt
94 Bytes
51.11 - Exercise Amazon Fine Food reviews LSTM model/FTUApps.com website coming soon.txt
94 Bytes
51.2 - Recurrent Neural Network/FTUApps.com website coming soon.txt
94 Bytes
51.3 - Training RNNs Backprop/FTUApps.com website coming soon.txt
94 Bytes
51.4 - Types of RNNs/FTUApps.com website coming soon.txt
94 Bytes
51.5 - Need for LSTMGRU/FTUApps.com website coming soon.txt
94 Bytes
51.6 - LSTM/FTUApps.com website coming soon.txt
94 Bytes
51.7 - GRUs/FTUApps.com website coming soon.txt
94 Bytes
51.8 - Deep RNN/FTUApps.com website coming soon.txt
94 Bytes
51.9 - Bidirectional RNN/FTUApps.com website coming soon.txt
94 Bytes
52.1 - Questions and Answers/FTUApps.com website coming soon.txt
94 Bytes
53.1 - Self Driving Car Problem definition/FTUApps.com website coming soon.txt
94 Bytes
53.10 - NVIDIA’s end to end CNN model/FTUApps.com website coming soon.txt
94 Bytes
53.11 - Train the model/FTUApps.com website coming soon.txt
94 Bytes
53.12 - Test and visualize the output/FTUApps.com website coming soon.txt
94 Bytes
53.13 - Extensions/FTUApps.com website coming soon.txt
94 Bytes
53.14 - Assignment/FTUApps.com website coming soon.txt
94 Bytes
53.2 - Datasets/FTUApps.com website coming soon.txt
94 Bytes
53.2 - Datasets#/FTUApps.com website coming soon.txt
94 Bytes
53.3 - Data understanding & Analysis Files and folders/FTUApps.com website coming soon.txt
94 Bytes
53.4 - Dash-cam images and steering angles/FTUApps.com website coming soon.txt
94 Bytes
53.5 - Split the dataset Train vs Test/FTUApps.com website coming soon.txt
94 Bytes
53.6 - EDA Steering angles/FTUApps.com website coming soon.txt
94 Bytes
53.7 - Mean Baseline model simple/FTUApps.com website coming soon.txt
94 Bytes
53.8 - Deep-learning modelDeep Learning for regression CNN, CNN+RNN/FTUApps.com website coming soon.txt
94 Bytes
53.9 - Batch load the dataset/FTUApps.com website coming soon.txt
94 Bytes
54.1 - Real-world problem/FTUApps.com website coming soon.txt
94 Bytes
54.10 - MIDI music generation/FTUApps.com website coming soon.txt
94 Bytes
54.11 - Survey blog/FTUApps.com website coming soon.txt
94 Bytes
54.2 - Music representation/FTUApps.com website coming soon.txt
94 Bytes
54.3 - Char-RNN with abc-notation Char-RNN model/FTUApps.com website coming soon.txt
94 Bytes
54.4 - Char-RNN with abc-notation Data preparation/FTUApps.com website coming soon.txt
94 Bytes
54.5 - Char-RNN with abc-notationMany to Many RNN ,TimeDistributed-Dense layer/FTUApps.com website coming soon.txt
94 Bytes
54.6 - Char-RNN with abc-notation State full RNN/FTUApps.com website coming soon.txt
94 Bytes
54.7 - Char-RNN with abc-notation Model architecture,Model training/FTUApps.com website coming soon.txt
94 Bytes
54.8 - Char-RNN with abc-notation Music generation/FTUApps.com website coming soon.txt
94 Bytes
54.9 - Char-RNN with abc-notation Generate tabla music/FTUApps.com website coming soon.txt
94 Bytes
55.1 - Human Activity Recognition Problem definition/FTUApps.com website coming soon.txt
94 Bytes
55.2 - Dataset understanding/FTUApps.com website coming soon.txt
94 Bytes
55.3 - Data cleaning & preprocessing/FTUApps.com website coming soon.txt
94 Bytes
55.4 - EDAUnivariate analysis/FTUApps.com website coming soon.txt
94 Bytes
55.5 - EDAData visualization using t-SNE/FTUApps.com website coming soon.txt
94 Bytes
55.6 - Classical ML models/FTUApps.com website coming soon.txt
94 Bytes
55.7 - Deep-learning Model/FTUApps.com website coming soon.txt
94 Bytes
55.8 - Exercise Build deeper LSTM models and hyper-param tune them/FTUApps.com website coming soon.txt
94 Bytes
56.1 - Problem definition/FTUApps.com website coming soon.txt
94 Bytes
56.10 - Feature engineering on GraphsJaccard & Cosine Similarities/FTUApps.com website coming soon.txt
94 Bytes
56.11 - PageRank/FTUApps.com website coming soon.txt
94 Bytes
56.12 - Shortest Path/FTUApps.com website coming soon.txt
94 Bytes
56.13 - Connected-components/FTUApps.com website coming soon.txt
94 Bytes
56.14 - Adar Index/FTUApps.com website coming soon.txt
94 Bytes
56.15 - Kartz Centrality/FTUApps.com website coming soon.txt
94 Bytes
56.16 - HITS Score/FTUApps.com website coming soon.txt
94 Bytes
56.17 - SVD/FTUApps.com website coming soon.txt
94 Bytes
56.18 - Weight features/FTUApps.com website coming soon.txt
94 Bytes
56.19 - Modeling/FTUApps.com website coming soon.txt
94 Bytes
56.2 - Overview of Graphs nodevertex, edgelink, directed-edge, path/FTUApps.com website coming soon.txt
94 Bytes
56.3 - Data format & Limitations/FTUApps.com website coming soon.txt
94 Bytes
56.4 - Mapping to a supervised classification problem/FTUApps.com website coming soon.txt
94 Bytes
56.5 - Business constraints & Metrics/FTUApps.com website coming soon.txt
94 Bytes
56.6 - EDABasic Stats/FTUApps.com website coming soon.txt
94 Bytes
56.7 - EDAFollower and following stats/FTUApps.com website coming soon.txt
94 Bytes
56.8 - EDABinary Classification Task/FTUApps.com website coming soon.txt
94 Bytes
56.9 - EDATrain and test split/FTUApps.com website coming soon.txt
94 Bytes
57.1 - Introduction to Databases/FTUApps.com website coming soon.txt
94 Bytes
57.10 - ORDER BY/FTUApps.com website coming soon.txt
94 Bytes
57.11 - DISTINCT/FTUApps.com website coming soon.txt
94 Bytes
57.12 - WHERE, Comparison operators, NULL/FTUApps.com website coming soon.txt
94 Bytes
57.13 - Logical Operators/FTUApps.com website coming soon.txt
94 Bytes
57.14 - Aggregate Functions COUNT, MIN, MAX, AVG, SUM/FTUApps.com website coming soon.txt
94 Bytes
57.15 - GROUP BY/FTUApps.com website coming soon.txt
94 Bytes
57.16 - HAVING/FTUApps.com website coming soon.txt
94 Bytes
57.17 - Order of keywords#/FTUApps.com website coming soon.txt
94 Bytes
57.18 - Join and Natural Join/FTUApps.com website coming soon.txt
94 Bytes
57.19 - Inner, Left, Right and Outer joins/FTUApps.com website coming soon.txt
94 Bytes
57.2 - Why SQL/FTUApps.com website coming soon.txt
94 Bytes
57.20 - Sub QueriesNested QueriesInner Queries/FTUApps.com website coming soon.txt
94 Bytes
57.21 - DMLINSERT/FTUApps.com website coming soon.txt
94 Bytes
57.22 - DMLUPDATE , DELETE/FTUApps.com website coming soon.txt
94 Bytes
57.23 - DDLCREATE TABLE/FTUApps.com website coming soon.txt
94 Bytes
57.24 - DDLALTER ADD, MODIFY, DROP/FTUApps.com website coming soon.txt
94 Bytes
57.25 - DDLDROP TABLE, TRUNCATE, DELETE/FTUApps.com website coming soon.txt
94 Bytes
57.26 - Data Control Language GRANT, REVOKE/FTUApps.com website coming soon.txt
94 Bytes
57.27 - Learning resources/FTUApps.com website coming soon.txt
94 Bytes
57.3 - Execution of an SQL statement/FTUApps.com website coming soon.txt
94 Bytes
57.4 - IMDB dataset/FTUApps.com website coming soon.txt
94 Bytes
57.5 - Installing MySQL/FTUApps.com website coming soon.txt
94 Bytes
57.6 - Load IMDB data/FTUApps.com website coming soon.txt
94 Bytes
57.7 - USE, DESCRIBE, SHOW TABLES/FTUApps.com website coming soon.txt
94 Bytes
57.8 - SELECT/FTUApps.com website coming soon.txt
94 Bytes
57.9 - LIMIT, OFFSET/FTUApps.com website coming soon.txt
94 Bytes
58.1 - AD-Click Predicition/FTUApps.com website coming soon.txt
94 Bytes
59.1 - Revision Questions/FTUApps.com website coming soon.txt
94 Bytes
59.2 - Questions/FTUApps.com website coming soon.txt
94 Bytes
59.3 - External resources for Interview Questions/FTUApps.com website coming soon.txt
94 Bytes
6.1 - Getting started with Matplotlib/FTUApps.com website coming soon.txt
94 Bytes
7.1 - Getting started with pandas/FTUApps.com website coming soon.txt
94 Bytes
7.2 - Data Frame Basics/FTUApps.com website coming soon.txt
94 Bytes
7.3 - Key Operations on Data Frames/FTUApps.com website coming soon.txt
94 Bytes
8.1 - Space and Time Complexity Find largest number in a list/FTUApps.com website coming soon.txt
94 Bytes
8.2 - Binary search/FTUApps.com website coming soon.txt
94 Bytes
8.3 - Find elements common in two lists/FTUApps.com website coming soon.txt
94 Bytes
8.4 - Find elements common in two lists using a HashtableDict/FTUApps.com website coming soon.txt
94 Bytes
9.1 - Introduction to IRIS dataset and 2D scatter plot/FTUApps.com website coming soon.txt
94 Bytes
9.10 - Percentiles and Quantiles/FTUApps.com website coming soon.txt
94 Bytes
9.11 - IQR(Inter Quartile Range) and MAD(Median Absolute Deviation)/FTUApps.com website coming soon.txt
94 Bytes
9.12 - Box-plot with Whiskers/FTUApps.com website coming soon.txt
94 Bytes
9.13 - Violin Plots/FTUApps.com website coming soon.txt
94 Bytes
9.14 - Summarizing Plots, Univariate, Bivariate and Multivariate analysis/FTUApps.com website coming soon.txt
94 Bytes
9.15 - Multivariate Probability Density, Contour Plot/FTUApps.com website coming soon.txt
94 Bytes
9.16 - Exercise Perform EDA on Haberman dataset/FTUApps.com website coming soon.txt
94 Bytes
9.2 - 3D scatter plot/FTUApps.com website coming soon.txt
94 Bytes
9.3 - Pair plots/FTUApps.com website coming soon.txt
94 Bytes
9.4 - Limitations of Pair Plots/FTUApps.com website coming soon.txt
94 Bytes
9.5 - Histogram and Introduction to PDF(Probability Density Function)/FTUApps.com website coming soon.txt
94 Bytes
9.6 - Univariate Analysis using PDF/FTUApps.com website coming soon.txt
94 Bytes
9.7 - CDF(Cumulative Distribution Function)/FTUApps.com website coming soon.txt
94 Bytes
9.8 - Mean, Variance and Standard Deviation/FTUApps.com website coming soon.txt
94 Bytes
9.9 - Median/FTUApps.com website coming soon.txt
94 Bytes
FTUApps.com website coming soon.txt
94 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>