搜索
[FreeCourseSite.com] Udemy - Complete Data Science & Machine Learning A-Z with Python
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - Complete Data Science & Machine Learning A-Z with Python
磁力链接/BT种子简介
种子哈希:
995e52c707e965713e15f8be5a94177580e2717e
文件大小:
10.57G
已经下载:
5327
次
下载速度:
极快
收录时间:
2023-12-17
最近下载:
2025-05-31
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:995E52C707E965713E15F8BE5A94177580E2717E
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
半半子
行尸走肉:无人之地
i雅缀
超顶推特调教母狗大神 我不是av男优 饭店调教母狗真空露出 上楼不免一顿艹
电击
韩漫pdf
octokuro+-+part+
颜值很棒身材火辣的女主播夜探男模店!直播找鸭全流程!
julia
coco lovelock
小欣奈姬小满
ntr_riko
dcw
fansly - weijoannana
莫菁
牙子系列
三个小伙
fc2ppv-4668418
不爱起名的ler婶子
القناص - مسلسل الكرتون - الحلقة 1
佐山爱
白石かんな+av+画像
现代
he+cums4
十二钗
lyrics
cjod-193
杭州高端女模特
adn-497
第一次双飞
文件列表
42. Competition Section on Kaggle/2. Competitions on Kaggle Lesson 2.mp4
201.0 MB
42. Competition Section on Kaggle/1. Competitions on Kaggle Lesson 1.mp4
197.3 MB
44. Code Section on Kaggle/3. Examining the Code Section in Kaggle Lesson 3.mp4
167.7 MB
43. Dataset Section on Kaggle/1. Datasets on Kaggle.mp4
139.7 MB
41. First Contact with Kaggle/1. What is Kaggle.mp4
136.0 MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/6. Recognizing Variables In Dataset.mp4
133.0 MB
41. First Contact with Kaggle/5. Getting to Know the Kaggle Homepage.mp4
128.9 MB
1. Installations/1. Installing Anaconda Distribution for Windows.mp4
124.1 MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/1. First Step to the Hearth Attack Prediction Project.mp4
122.8 MB
1. Installations/5. Installing Anaconda Distribution for Linux.mp4
120.3 MB
21. Matplotlib/8. Basic Plots in Matplotlib I.mp4
116.6 MB
46. Other Most Used Options on Kaggle/2. Ranking Among Users on Kaggle.mp4
112.2 MB
27. Linear Regression Algorithm in Machine Learning A-Z/3. Linear Regression Algorithm With Python Part 2.mp4
112.1 MB
44. Code Section on Kaggle/2. Examining the Code Section in Kaggle Lesson 2.mp4
111.0 MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/3. Notebook Design to be Used in the Project.mp4
110.0 MB
25. Evaluation Metrics in Machine Learning/2. Machine Learning Model Performance Evaluation Classification Error Metrics.mp4
105.1 MB
22. Seaborn/5. Basic Plots in Seaborn.mp4
103.6 MB
25. Evaluation Metrics in Machine Learning/4. Machine Learning With Python.mp4
96.7 MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/4. Examining Statistics of Variables.mp4
95.8 MB
14. Functions That Can Be Applied on a DataFrame/3. Aggregation Functions in Pandas DataFrames.mp4
95.1 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp4
95.1 MB
27. Linear Regression Algorithm in Machine Learning A-Z/5. Linear Regression Algorithm With Python Part 4.mp4
94.4 MB
14. Functions That Can Be Applied on a DataFrame/5. Coordinated Use of Grouping and Aggregation Functions in Pandas Dataframes.mp4
92.4 MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp4
88.1 MB
47. Details on Kaggle/1. User Page Review on Kaggle.mp4
85.5 MB
29. Logistic Regression Algorithm in Machine Learning A-Z/3. Logistic Regression Algorithm with Python Part 2.mp4
85.4 MB
23. Geoplotlib/3. Example - 2.mp4
85.1 MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/1. Numeric Variables (Analysis with Distplot) Lesson 1.mp4
84.3 MB
44. Code Section on Kaggle/1. Examining the Code Section in Kaggle Lesson 1.mp4
83.4 MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/5. Examining the Project Topic.mp4
80.2 MB
27. Linear Regression Algorithm in Machine Learning A-Z/2. Linear Regression Algorithm With Python Part 1.mp4
79.9 MB
19. Fundamentals of Python 3/5. Lists, Tuples, Dictionaries and Sets in pyhton.mp4
79.0 MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp4
78.4 MB
47. Details on Kaggle/2. Treasure in The Kaggle.mp4
78.3 MB
29. Logistic Regression Algorithm in Machine Learning A-Z/2. Logistic Regression Algorithm with Python Part 1.mp4
75.7 MB
6. Operations in Numpy Library/2. Arithmetic Operations in Numpy.mp4
75.3 MB
27. Linear Regression Algorithm in Machine Learning A-Z/4. Linear Regression Algorithm With Python Part 3.mp4
73.7 MB
21. Matplotlib/4. Figure, Subplot and Axex.mp4
73.3 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp4
71.4 MB
11. Structural Operations on Pandas DataFrame/3. Null Values in Pandas Dataframes.mp4
70.2 MB
16. File Operations in Pandas Library/2. Data Entry with Csv and Txt Files.mp4
67.5 MB
49. First Organization/3. Initial analysis on the dataset.mp4
67.1 MB
13. Structural Concatenation Operations in Pandas DataFrame/1. Concatenating Pandas Dataframes Concat Function.mp4
66.9 MB
49. First Organization/1. Required Python Libraries.mp4
66.6 MB
21. Matplotlib/5. Figure Customization.mp4
66.4 MB
20. Object Oriented Programming (OOP)/5. Overriding and Overloading in Object Oriented Programming (OOP).mp4
65.7 MB
13. Structural Concatenation Operations in Pandas DataFrame/4. Merge Pandas Dataframes Merge() Function Lesson 3.mp4
63.1 MB
22. Seaborn/7. Regression Plots and Squarify in Seaborn.mp4
63.0 MB
2. NumPy Library Introduction/2. The Power of NumPy.mp4
62.8 MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/3. K Nearest Neighbors Algorithm with Python Part 2.mp4
62.3 MB
19. Fundamentals of Python 3/4. Loops in Python.mp4
61.7 MB
54. Modelling for Machine Learning/4. Hyperparameter Optimization (with GridSearchCV).mp4
61.6 MB
47. Details on Kaggle/4. What Should Be Done to Achieve Success in Kaggle.mp4
61.3 MB
13. Structural Concatenation Operations in Pandas DataFrame/2. Merge Pandas Dataframes Merge() Function Lesson 1.mp4
60.1 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp4
59.0 MB
13. Structural Concatenation Operations in Pandas DataFrame/6. Joining Pandas Dataframes Join() Function.mp4
58.8 MB
28. Bias Variance Trade-Off in Machine Learning/1. What is Bias Variance Trade-Off.mp4
57.7 MB
22. Seaborn/3. Example in Seaborn.mp4
57.6 MB
21. Matplotlib/9. Basic Plots in Matplotlib II.mp4
57.5 MB
15. Pivot Tables in Pandas Library/2. Pivot Tables in Pandas Library.mp4
56.9 MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/5. Examining the Missing Data According to the Analysis Result.mp4
56.4 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/8. Creating a New DataFrame with the Melt() Function.mp4
55.5 MB
54. Modelling for Machine Learning/8. Hyperparameter Optimization (with GridSearchCV).mp4
55.2 MB
46. Other Most Used Options on Kaggle/1. Courses in Kaggle.mp4
54.7 MB
19. Fundamentals of Python 3/10. Exercise - Solution in Python.mp4
54.4 MB
11. Structural Operations on Pandas DataFrame/5. Filling Null Values Fillna() Function.mp4
54.1 MB
23. Geoplotlib/4. Example - 3.mp4
53.8 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp4
51.8 MB
33. Decision Tree Algorithm in Machine Learning A-Z/3. Decision Tree Algorithm with Python Part 2.mp4
51.3 MB
22. Seaborn/4. Color Palettes in Seaborn.mp4
50.7 MB
8. Series Structures in the Pandas Library/6. Most Applied Methods on Pandas Series.mp4
50.6 MB
32. Hyperparameter Optimization/2. Hyperparameter Optimization with Python.mp4
49.8 MB
29. Logistic Regression Algorithm in Machine Learning A-Z/4. Logistic Regression Algorithm with Python Part 3.mp4
49.6 MB
29. Logistic Regression Algorithm in Machine Learning A-Z/5. Logistic Regression Algorithm with Python Part 4.mp4
49.5 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp4
49.4 MB
14. Functions That Can Be Applied on a DataFrame/8. Advanced Aggregation Functions Transform() Function.mp4
49.4 MB
19. Fundamentals of Python 3/1. Data Types in Python.mp4
49.4 MB
14. Functions That Can Be Applied on a DataFrame/4. Examining the Data Set 2.mp4
48.8 MB
10. Element Selection Operations in DataFrame Structures/6. Element Selection with Conditional Operations in.mp4
48.6 MB
1. Installations/3. Installing Anaconda Distribution for MacOs.mp4
48.6 MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/1. Examining Missing Values.mp4
48.0 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/7. Fancy Indexing of Two-Dimensional Arrrays.mp4
48.0 MB
25. Evaluation Metrics in Machine Learning/3. Evaluating Performance Regression Error Metrics in Python.mp4
47.9 MB
2. NumPy Library Introduction/1. Introduction to NumPy Library.mp4
47.5 MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/2. Examining Unique Values.mp4
46.7 MB
53. Preparation for Modelling in Machine Learning/4. Dealing with Outliers – Trtbps Variable Lesson 2.mp4
46.0 MB
19. Fundamentals of Python 3/6. Data Type Operators and Methods in Python.mp4
46.0 MB
41. First Contact with Kaggle/3. Registering on Kaggle and Member Login Procedures.mp4
45.6 MB
3. Creating NumPy Array in Python/8. Creating NumPy Array with Random() Function.mp4
45.4 MB
22. Seaborn/6. Multi-Plots in Seaborn.mp4
45.1 MB
14. Functions That Can Be Applied on a DataFrame/2. Examining the Data Set 1.mp4
45.0 MB
53. Preparation for Modelling in Machine Learning/3. Dealing with Outliers – Trtbps Variable Lesson 1.mp4
44.9 MB
12. Multi-Indexed DataFrame Structures/1. Multi-Index and Index Hierarchy in Pandas DataFrames.mp4
44.7 MB
33. Decision Tree Algorithm in Machine Learning A-Z/5. Decision Tree Algorithm with Python Part 4.mp4
44.6 MB
22. Seaborn/2. Controlling Figure Aesthetics in Seaborn.mp4
43.8 MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/3. Support Vector Machine Algorithm with Python Part 2.mp4
43.7 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp4
43.7 MB
54. Modelling for Machine Learning/3. Roc Curve and Area Under Curve (AUC).mp4
43.7 MB
14. Functions That Can Be Applied on a DataFrame/9. Advanced Aggregation Functions Apply() Function.mp4
43.4 MB
19. Fundamentals of Python 3/3. Conditionals in Python.mp4
43.2 MB
46. Other Most Used Options on Kaggle/3. Blog and Documentation Sections.mp4
42.8 MB
13. Structural Concatenation Operations in Pandas DataFrame/5. Merge Pandas Dataframes Merge() Function Lesson 4.mp4
42.7 MB
45. Discussion Section on Kaggle/1. What is Discussion on Kaggle.mp4
42.6 MB
11. Structural Operations on Pandas DataFrame/6. Setting Index in Pandas DataFrames.mp4
41.6 MB
29. Logistic Regression Algorithm in Machine Learning A-Z/6. Logistic Regression Algorithm with Python Part 5.mp4
41.3 MB
8. Series Structures in the Pandas Library/1. Creating a Pandas Series with a List.mp4
41.1 MB
15. Pivot Tables in Pandas Library/1. Examining the Data Set 3.mp4
41.0 MB
23. Geoplotlib/2. Example - 1.mp4
40.7 MB
34. Random Forest Algorithm in Machine Learning A-Z/3. Random Forest Algorithm with Pyhon Part 2.mp4
40.6 MB
34. Random Forest Algorithm in Machine Learning A-Z/2. Random Forest Algorithm with Pyhon Part 1.mp4
40.5 MB
4. Functions in the NumPy Library/4. Concatenating Numpy Arrays Concatenate() Functio.mp4
40.2 MB
10. Element Selection Operations in DataFrame Structures/3. Top Level Element Selection in Pandas DataFramesLesson 1.mp4
40.1 MB
47. Details on Kaggle/3. Publishing Notebooks on Kaggle.mp4
40.1 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp4
39.9 MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/1. Principal Component Analysis (PCA) Theory.mp4
39.8 MB
14. Functions That Can Be Applied on a DataFrame/1. Loading a Dataset from the Seaborn Library.mp4
39.6 MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/5. Support Vector Machine Algorithm with Python Part 4.mp4
39.4 MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/4. Principal Component Analysis (PCA) with Python Part 3.mp4
39.1 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp4
38.1 MB
53. Preparation for Modelling in Machine Learning/5. Dealing with Outliers – Thalach Variable.mp4
38.0 MB
53. Preparation for Modelling in Machine Learning/6. Dealing with Outliers – Oldpeak Variable.mp4
37.8 MB
20. Object Oriented Programming (OOP)/2. Constructor in Object Oriented Programming (OOP).mp4
37.6 MB
33. Decision Tree Algorithm in Machine Learning A-Z/1. Decision Tree Algorithm Theory.mp4
37.5 MB
4. Functions in the NumPy Library/6. Splitting Two-Dimensional Numpy Arrays Split(),.mp4
37.5 MB
19. Fundamentals of Python 3/2. Operators in Python.mp4
37.4 MB
16. File Operations in Pandas Library/4. Outputting as an CSV Extension.mp4
37.4 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp4
37.4 MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/2. Support Vector Machine Algorithm with Python Part 1.mp4
37.3 MB
38. Hierarchical Clustering Algorithm in machine learning data science/2. Hierarchical Clustering Algorithm with Python Part 2.mp4
37.2 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp4
37.2 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/5. Assigning Value to Two-Dimensional Array.mp4
37.1 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/7. Feature Scaling with the Robust Scaler Method.mp4
36.9 MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/2. K Nearest Neighbors Algorithm with Python Part 1.mp4
36.7 MB
53. Preparation for Modelling in Machine Learning/2. Visualizing Outliers.mp4
36.6 MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/4. Support Vector Machine Algorithm with Python Part 3.mp4
36.5 MB
30. K-fold Cross-Validation in Machine Learning A-Z/2. K-Fold Cross-Validation with Python.mp4
36.3 MB
16. File Operations in Pandas Library/1. Accessing and Making Files Available.mp4
36.3 MB
20. Object Oriented Programming (OOP)/4. Inheritance in Object Oriented Programming (OOP).mp4
36.3 MB
11. Structural Operations on Pandas DataFrame/4. Dropping Null Values Dropna() Function.mp4
36.2 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/3. Slicing Two-Dimensional Numpy Arrays.mp4
35.9 MB
23. Geoplotlib/1. What is Geoplotlib.mp4
35.8 MB
27. Linear Regression Algorithm in Machine Learning A-Z/1. Linear Regression Algorithm Theory in Machine Learning A-Z.mp4
35.7 MB
7. Pandas Library Introduction/1. Introduction to Pandas Library.mp4
35.6 MB
11. Structural Operations on Pandas DataFrame/1. Adding Columns to Pandas Data Frames.mp4
35.2 MB
32. Hyperparameter Optimization/1. Hyperparameter Optimization Theory.mp4
34.7 MB
33. Decision Tree Algorithm in Machine Learning A-Z/6. Decision Tree Algorithm with Python Part 5.mp4
34.3 MB
6. Operations in Numpy Library/3. Statistical Operations in Numpy.mp4
33.6 MB
10. Element Selection Operations in DataFrame Structures/2. Element Selection Operations in Pandas DataFrames Lesson 2.mp4
33.4 MB
26. Supervised Learning with Machine Learning/1. What is Supervised Learning in Machine Learning.mp4
33.2 MB
33. Decision Tree Algorithm in Machine Learning A-Z/2. Decision Tree Algorithm with Python Part 1.mp4
33.1 MB
10. Element Selection Operations in DataFrame Structures/4. Top Level Element Selection in Pandas DataFramesLesson 2.mp4
32.9 MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/4. K Nearest Neighbors Algorithm with Python Part 3.mp4
32.9 MB
12. Multi-Indexed DataFrame Structures/3. Selecting Elements Using the xs() Function in Multi-Indexed DataFrames.mp4
32.8 MB
13. Structural Concatenation Operations in Pandas DataFrame/3. Merge Pandas Dataframes Merge() Function Lesson 2.mp4
32.0 MB
54. Modelling for Machine Learning/2. Cross Validation.mp4
31.7 MB
37. K Means Clustering Algorithm in Machine Learning A-Z/2. K Means Clustering Algorithm with Python Part 1.mp4
31.4 MB
10. Element Selection Operations in DataFrame Structures/1. Element Selection Operations in Pandas DataFrames Lesson 1.mp4
31.3 MB
8. Series Structures in the Pandas Library/7. Indexing and Slicing Pandas Series.mp4
31.3 MB
54. Modelling for Machine Learning/7. Random Forest Algorithm.mp4
31.2 MB
53. Preparation for Modelling in Machine Learning/11. Separating Data into Test and Training Set.mp4
31.2 MB
37. K Means Clustering Algorithm in Machine Learning A-Z/3. K Means Clustering Algorithm with Python Part 2.mp4
31.1 MB
3. Creating NumPy Array in Python/1. Creating NumPy Array with The Array() Function.mp4
30.9 MB
54. Modelling for Machine Learning/1. Logistic Regression.mp4
30.8 MB
14. Functions That Can Be Applied on a DataFrame/6. Advanced Aggregation Functions Aggregate() Function.mp4
30.6 MB
37. K Means Clustering Algorithm in Machine Learning A-Z/5. K Means Clustering Algorithm with Python Part 4.mp4
30.4 MB
19. Fundamentals of Python 3/8. Functions in Python.mp4
30.3 MB
38. Hierarchical Clustering Algorithm in machine learning data science/3. Hierarchical Clustering Algorithm with Python Part 2.mp4
30.3 MB
55. Conclusion/1. Project Conclusion and Sharing.mp4
30.1 MB
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/1. K Nearest Neighbors Algorithm Theory.mp4
30.0 MB
38. Hierarchical Clustering Algorithm in machine learning data science/1. Hierarchical Clustering Algorithm Theory.mp4
29.9 MB
21. Matplotlib/3. Pyplot – Pylab - Matplotlib.mp4
29.8 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp4
29.7 MB
21. Matplotlib/2. Using Pyplot.mp4
29.6 MB
29. Logistic Regression Algorithm in Machine Learning A-Z/1. What is Logistic Regression Algorithm in Machine Learning.mp4
29.2 MB
37. K Means Clustering Algorithm in Machine Learning A-Z/4. K Means Clustering Algorithm with Python Part 3.mp4
29.1 MB
24. First Contact with Machine Learning/1. What is Machine Learning.mp4
28.9 MB
21. Matplotlib/6. Plot Customization.mp4
28.7 MB
53. Preparation for Modelling in Machine Learning/1. Dropping Columns with Low Correlation.mp4
28.1 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/1. Indexing Numpy Arrays,.mp4
27.8 MB
4. Functions in the NumPy Library/1. Reshaping a NumPy Array Reshape() Function.mp4
27.4 MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/2. Principal Component Analysis (PCA) with Python Part 1.mp4
27.3 MB
9. DataFrame Structures in Pandas Library/4. Examining the Properties of Pandas DataFrames.mp4
27.2 MB
54. Modelling for Machine Learning/5. Decision Tree Algorithm.mp4
27.0 MB
53. Preparation for Modelling in Machine Learning/7. Determining Distributions of Numeric Variables.mp4
26.4 MB
20. Object Oriented Programming (OOP)/3. Methods in Object Oriented Programming (OOP).mp4
26.3 MB
12. Multi-Indexed DataFrame Structures/2. Element Selection in Multi-Indexed DataFrames.mp4
25.8 MB
54. Modelling for Machine Learning/6. Support Vector Machine Algorithm.mp4
25.7 MB
14. Functions That Can Be Applied on a DataFrame/7. Advanced Aggregation Functions Filter() Function.mp4
25.6 MB
6. Operations in Numpy Library/4. Solving Second-Degree Equations with NumPy.mp4
25.4 MB
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp4
25.3 MB
53. Preparation for Modelling in Machine Learning/9. Applying One Hot Encoding Method to Categorical Variables.mp4
25.3 MB
3. Creating NumPy Array in Python/2. Creating NumPy Array with Zeros() Function.mp4
25.2 MB
53. Preparation for Modelling in Machine Learning/8. Transformation Operations on Unsymmetrical Data.mp4
25.2 MB
19. Fundamentals of Python 3/7. Modules in Python.mp4
25.1 MB
21. Matplotlib/7. Grid, Spines, Ticks.mp4
25.0 MB
40. Recommender System Algorithm in Machine Learning A-Z/1. What is the Recommender System Part 1.mp4
24.2 MB
34. Random Forest Algorithm in Machine Learning A-Z/1. Random Forest Algorithm Theory.mp4
24.0 MB
9. DataFrame Structures in Pandas Library/1. Creating Pandas DataFrame with List.mp4
23.7 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/2. Slicing One-Dimensional Numpy Arrays.mp4
23.4 MB
10. Element Selection Operations in DataFrame Structures/5. Top Level Element Selection in Pandas DataFramesLesson 3.mp4
23.2 MB
3. Creating NumPy Array in Python/9. Properties of NumPy Array.mp4
23.0 MB
35. Support Vector Machine Algorithm in Machine Learning A-Z/1. Support Vector Machine Algorithm Theory.mp4
22.9 MB
16. File Operations in Pandas Library/3. Data Entry with Excel Files.mp4
22.9 MB
6. Operations in Numpy Library/1. Operations with Comparison Operators.mp4
22.2 MB
4. Functions in the NumPy Library/5. Splitting One-Dimensional Numpy Arrays The Split.mp4
21.9 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/6. Fancy Indexing of One-Dimensional Arrrays.mp4
21.5 MB
25. Evaluation Metrics in Machine Learning/1. Classification vs Regression in Machine Learning.mp4
20.9 MB
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/2. Numeric Variables (Analysis with Distplot) Lesson 2.mp4
20.7 MB
16. File Operations in Pandas Library/5. Outputting as an Excel File.mp4
20.7 MB
8. Series Structures in the Pandas Library/4. Object Types in Series.mp4
20.5 MB
21. Matplotlib/1. What is Matplotlib.mp4
20.0 MB
8. Series Structures in the Pandas Library/5. Examining the Primary Features of the Pandas Seri.mp4
19.9 MB
8. Series Structures in the Pandas Library/2. Creating a Pandas Series with a Dictionary.mp4
19.2 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/4. Assigning Value to One-Dimensional Arrays.mp4
19.1 MB
40. Recommender System Algorithm in Machine Learning A-Z/2. What is the Recommender System Part 2.mp4
18.8 MB
30. K-fold Cross-Validation in Machine Learning A-Z/1. K-Fold Cross-Validation Theory.mp4
18.3 MB
20. Object Oriented Programming (OOP)/1. Logic of Object Oriented Programming.mp4
18.2 MB
37. K Means Clustering Algorithm in Machine Learning A-Z/1. K Means Clustering Algorithm Theory.mp4
18.0 MB
4. Functions in the NumPy Library/7. Sorting Numpy Arrays Sort() Function.mp4
17.8 MB
36. Unsupervised Learning with Machine Learning/1. Unsupervised Learning Overview.mp4
17.7 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/9. Combining Fancy Index with Normal Slicing.mp4
17.3 MB
3. Creating NumPy Array in Python/3. Creating NumPy Array with Ones() Function.mp4
16.7 MB
9. DataFrame Structures in Pandas Library/3. Creating Pandas DataFrame with Dictionary.mp4
16.6 MB
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/3. Separating variables (Numeric or Categorical).mp4
16.6 MB
11. Structural Operations on Pandas DataFrame/2. Removing Rows and Columns from Pandas Data frames.mp4
16.3 MB
4. Functions in the NumPy Library/2. Identifying the Largest Element of a Numpy Array.mp4
15.9 MB
33. Decision Tree Algorithm in Machine Learning A-Z/4. Decision Tree Algorithm with Python Part 3.mp4
15.4 MB
24. First Contact with Machine Learning/2. Machine Learning Terminology.mp4
14.7 MB
22. Seaborn/1. What is Seaborn.mp4
14.3 MB
18. Introduction to Data Visualization with Python/1. Introduction to Data Visualization with Python.mp4
13.5 MB
5. Indexing, Slicing, and Assigning NumPy Arrays/8. Combining Fancy Index with Normal Indexing.mp4
13.3 MB
3. Creating NumPy Array in Python/6. Creating NumPy Array with Eye() Function.mp4
13.2 MB
3. Creating NumPy Array in Python/5. Creating NumPy Array with Arange() Function.mp4
12.7 MB
9. DataFrame Structures in Pandas Library/2. Creating Pandas DataFrame with NumPy Array.mp4
12.7 MB
8. Series Structures in the Pandas Library/3. Creating Pandas Series with NumPy Array.mp4
12.6 MB
53. Preparation for Modelling in Machine Learning/10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp4
12.0 MB
3. Creating NumPy Array in Python/4. Creating NumPy Array with Full() Function.mp4
11.7 MB
4. Functions in the NumPy Library/3. Detecting Least Element of Numpy Array Min(), Ar.mp4
10.7 MB
49. First Organization/2. Loading the Statistics Dataset in Data Science.mp4
10.5 MB
19. Fundamentals of Python 3/9. Exercise - Analyse in Python.mp4
8.9 MB
39. Principal Component Analysis (PCA) in Machine Learning A-Z/3. Principal Component Analysis (PCA) with Python Part 2.mp4
8.8 MB
3. Creating NumPy Array in Python/7. Creating NumPy Array with Linspace() Function.mp4
7.7 MB
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/2. FAQ about Machine Learning, Data Science.html
15.7 kB
41. First Contact with Kaggle/2. FAQ about Kaggle.html
11.2 kB
18. Introduction to Data Visualization with Python/2. FAQ regarding Data Visualization, Python.html
8.8 kB
24. First Contact with Machine Learning/5. FAQ regarding Machine Learning.html
6.8 kB
24. First Contact with Machine Learning/4. FAQ regarding Python.html
6.4 kB
1. Installations/4. 6 Article Advice And Links about Numpy, Numpy Pyhon.html
4.3 kB
56. Extra/1. Complete Data Science & Machine Learning A-Z with Python.html
266 Bytes
24. First Contact with Machine Learning/3. Machine Learning Project Files.html
254 Bytes
10. Element Selection Operations in DataFrame Structures/7. Quiz.html
205 Bytes
11. Structural Operations on Pandas DataFrame/7. Quiz.html
205 Bytes
12. Multi-Indexed DataFrame Structures/4. Quiz.html
205 Bytes
13. Structural Concatenation Operations in Pandas DataFrame/7. Quiz.html
205 Bytes
14. Functions That Can Be Applied on a DataFrame/10. Quiz.html
205 Bytes
15. Pivot Tables in Pandas Library/3. Quiz.html
205 Bytes
16. File Operations in Pandas Library/6. Quiz.html
205 Bytes
19. Fundamentals of Python 3/11. Quiz.html
205 Bytes
2. NumPy Library Introduction/3. Quiz.html
205 Bytes
20. Object Oriented Programming (OOP)/6. Quiz.html
205 Bytes
21. Matplotlib/10. Quiz.html
205 Bytes
22. Seaborn/8. Quiz.html
205 Bytes
23. Geoplotlib/5. Quiz.html
205 Bytes
24. First Contact with Machine Learning/6. Quiz.html
205 Bytes
25. Evaluation Metrics in Machine Learning/5. Quiz.html
205 Bytes
26. Supervised Learning with Machine Learning/2. Quiz.html
205 Bytes
28. Bias Variance Trade-Off in Machine Learning/2. Quiz.html
205 Bytes
29. Logistic Regression Algorithm in Machine Learning A-Z/7. Quiz.html
205 Bytes
3. Creating NumPy Array in Python/10. Quiz.html
205 Bytes
31. K Nearest Neighbors Algorithm in Machine Learning A-Z/5. Quiz.html
205 Bytes
33. Decision Tree Algorithm in Machine Learning A-Z/7. Quiz.html
205 Bytes
35. Support Vector Machine Algorithm in Machine Learning A-Z/6. Quiz.html
205 Bytes
37. K Means Clustering Algorithm in Machine Learning A-Z/6. Quiz.html
205 Bytes
4. Functions in the NumPy Library/8. Quiz.html
205 Bytes
41. First Contact with Kaggle/6. quiz.html
205 Bytes
43. Dataset Section on Kaggle/2. Quiz.html
205 Bytes
44. Code Section on Kaggle/4. Quiz.html
205 Bytes
45. Discussion Section on Kaggle/2. Quiz.html
205 Bytes
46. Other Most Used Options on Kaggle/4. Quiz.html
205 Bytes
47. Details on Kaggle/5. Quiz.html
205 Bytes
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/7. Quiz.html
205 Bytes
49. First Organization/4. Quiz.html
205 Bytes
50. Preparation For Exploratory Data Analysis (EDA) in Data Science/5. Quiz.html
205 Bytes
51. Exploratory Data Analysis (EDA) - Uni-variate Analysis/6. Quiz.html
205 Bytes
52. Exploratory Data Analysis (EDA) - Bi-variate Analysis/15. Quiz.html
205 Bytes
53. Preparation for Modelling in Machine Learning/12. Quiz.html
205 Bytes
54. Modelling for Machine Learning/9. Quiz.html
205 Bytes
55. Conclusion/2. Quiz.html
205 Bytes
7. Pandas Library Introduction/3. Quiz.html
205 Bytes
8. Series Structures in the Pandas Library/8. Quiz.html
205 Bytes
9. DataFrame Structures in Pandas Library/5. Quiz.html
205 Bytes
7. Pandas Library Introduction/2. Pandas Project Files Link.html
180 Bytes
17. Code Files And Resources Python data analysis and visualization/1. Data Visualisation - Matplotlib Files.html
170 Bytes
17. Code Files And Resources Python data analysis and visualization/2. Data Visualisation - Seaborn Files.html
170 Bytes
17. Code Files And Resources Python data analysis and visualization/3. Data Visualisation - Geoplotlib.html
168 Bytes
1. Installations/2. Notebook Project Files Link regarding NumPy Python Programming Language Library.html
155 Bytes
0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
11. Structural Operations on Pandas DataFrame/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
26. Supervised Learning with Machine Learning/0. Websites you may like/[FreeCourseSite.com].url
127 Bytes
0. Websites you may like/[CourseClub.Me].url
122 Bytes
11. Structural Operations on Pandas DataFrame/0. Websites you may like/[CourseClub.Me].url
122 Bytes
26. Supervised Learning with Machine Learning/0. Websites you may like/[CourseClub.Me].url
122 Bytes
48. Introduction to Machine Learning with Real Hearth Attack Prediction Project/4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html
108 Bytes
41. First Contact with Kaggle/4. Project Link File - Hearth Attack Prediction Project, Machine Learning.html
97 Bytes
0. Websites you may like/[GigaCourse.Com].url
49 Bytes
11. Structural Operations on Pandas DataFrame/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
26. Supervised Learning with Machine Learning/0. Websites you may like/[GigaCourse.Com].url
49 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>