搜索
Machine Learning A-Z AI, Python & R + ChatGPT Prize
磁力链接/BT种子名称
Machine Learning A-Z AI, Python & R + ChatGPT Prize
磁力链接/BT种子简介
种子哈希:
8571d7502767da669ca0dfcd565b69d0dc35d06e
文件大小:
8.09G
已经下载:
2898
次
下载速度:
极快
收录时间:
2025-02-16
最近下载:
2025-06-13
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:8571D7502767DA669CA0DFCD565B69D0DC35D06E
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
眼镜师妹
elizabeth
二逼
我沉迷于与已婚女性发生性关系,和她们待在家里,直到我最终留级大学……
小手冰
电视台
御姐探花
ai换脸杨幂
推特绿奴
unique
遮天86
ゾイ
イウウイ
人妖3p
小似
生から始める異
快手
淫语篇
dsvr 1614
巨乳护士
绝色
木花
杏吧 黑人
aofr
贵阳夫妻找单男
上条めぐ
喷潮合集
跪舔口爆
間桐
fc2-ppv-4552950
文件列表
37 - Convolutional Neural Networks/010 dataset.zip
232.4 MB
37 - Convolutional Neural Networks/001 dataset.zip
232.0 MB
37 - Convolutional Neural Networks/016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.mp4
76.3 MB
41 - Kernel PCA/002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.mp4
72.2 MB
43 - Model Selection/004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.mp4
71.1 MB
40 - Linear Discriminant Analysis (LDA)/003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.mp4
68.1 MB
43 - Model Selection/005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.mp4
65.9 MB
20 - Naive Bayes/001 Understanding Bayes--' Theorem Intuitively From Probability to Machine Learning.mp4
65.6 MB
29 - Apriori/008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift --& Confidence.mp4
65.2 MB
29 - Apriori/006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.mp4
64.2 MB
29 - Apriori/005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.mp4
63.6 MB
37 - Convolutional Neural Networks/007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.mp4
62.6 MB
33 - Thompson Sampling/008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.mp4
61.5 MB
33 - Thompson Sampling/001 Understanding Thompson Sampling Algorithm Intuition and Implementation.mp4
61.3 MB
44 - XGBoost/003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.mp4
60.3 MB
36 - Artificial Neural Networks/011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.mp4
60.1 MB
37 - Convolutional Neural Networks/009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.mp4
59.2 MB
29 - Apriori/001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.mp4
58.8 MB
32 - Upper Confidence Bound (UCB)/012 Step 3 Optimizing Ad Selection - UCB --& Multi-Armed Bandit Algorithm Explained.mp4
58.4 MB
37 - Convolutional Neural Networks/013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.mp4
57.9 MB
07 - Multiple Linear Regression/023 Optimizing Multiple Regression Models Backward Elimination Technique in R.mp4
57.6 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.mp4
57.5 MB
37 - Convolutional Neural Networks/012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.mp4
57.4 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.mp4
56.2 MB
36 - Artificial Neural Networks/015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.mp4
55.9 MB
45 - Annex Logistic Regression (Long Explanation)/001 Logistic Regression Intuition.mp4
55.2 MB
29 - Apriori/003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.mp4
55.2 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.mp4
55.2 MB
39 - Principal Component Analysis (PCA)/002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.mp4
54.4 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.mp4
53.6 MB
37 - Convolutional Neural Networks/003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.mp4
53.0 MB
36 - Artificial Neural Networks/014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.mp4
53.0 MB
36 - Artificial Neural Networks/002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.mp4
52.2 MB
32 - Upper Confidence Bound (UCB)/011 Step 2 - UCB Algorithm in R Calculating Average Reward --& Confidence Interval.mp4
51.7 MB
37 - Convolutional Neural Networks/002 Introduction to CNNs Understanding Deep Learning for Computer Vision.mp4
51.1 MB
32 - Upper Confidence Bound (UCB)/006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.mp4
50.9 MB
32 - Upper Confidence Bound (UCB)/001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.mp4
50.7 MB
07 - Multiple Linear Regression/007 Backward Elimination Building Robust Multiple Linear Regression Models.mp4
50.6 MB
37 - Convolutional Neural Networks/015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.mp4
48.2 MB
40 - Linear Discriminant Analysis (LDA)/002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.mp4
48.0 MB
44 - XGBoost/001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.mp4
47.8 MB
37 - Convolutional Neural Networks/005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.mp4
47.6 MB
36 - Artificial Neural Networks/018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.mp4
47.6 MB
43 - Model Selection/006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.mp4
47.4 MB
29 - Apriori/007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.mp4
47.3 MB
43 - Model Selection/003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.mp4
46.9 MB
36 - Artificial Neural Networks/012 Step 3 - Designing ANN Sequential Model --& Dense Layers for Deep Learning.mp4
46.7 MB
32 - Upper Confidence Bound (UCB)/002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.mp4
45.9 MB
39 - Principal Component Analysis (PCA)/006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.mp4
45.8 MB
33 - Thompson Sampling/005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.mp4
45.4 MB
35 - -------------------- Part 8 Deep Learning --------------------/002 Introduction to Deep Learning From Historical Context to Modern Applications.mp4
45.0 MB
20 - Naive Bayes/002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.mp4
44.4 MB
32 - Upper Confidence Bound (UCB)/010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.mp4
44.1 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.mp4
42.3 MB
36 - Artificial Neural Networks/005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.mp4
41.9 MB
36 - Artificial Neural Networks/017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.mp4
41.8 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.mp4
41.7 MB
29 - Apriori/004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.mp4
41.4 MB
36 - Artificial Neural Networks/004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.mp4
41.3 MB
32 - Upper Confidence Bound (UCB)/003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.mp4
41.0 MB
33 - Thompson Sampling/004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.mp4
39.9 MB
19 - Kernel SVM/003 Kernel Trick SVM Machine Learning for Non-Linear Classification.mp4
39.8 MB
39 - Principal Component Analysis (PCA)/004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.mp4
39.3 MB
30 - Eclat/002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.mp4
38.7 MB
36 - Artificial Neural Networks/013 Step 4 - Train Neural Network Compile --& Fit for Customer Churn Prediction.mp4
38.6 MB
07 - Multiple Linear Regression/006 Understanding P-Values and Statistical Significance in Hypothesis Testing.mp4
37.9 MB
37 - Convolutional Neural Networks/011 Step 1 Intro to CNNs for Image Classification.mp4
37.4 MB
39 - Principal Component Analysis (PCA)/005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.mp4
36.7 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/004 From IfElse Rules to CNNs Evolution of Natural Language Processing.mp4
36.7 MB
27 - Hierarchical Clustering/003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.mp4
36.7 MB
19 - Kernel SVM/005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.mp4
35.8 MB
10 - Decision Tree Regression/001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.mp4
35.7 MB
41 - Kernel PCA/001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.mp4
35.7 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.mp4
35.5 MB
24 - Evaluating Classification Models Performance/003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.mp4
34.1 MB
36 - Artificial Neural Networks/010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.mp4
33.4 MB
30 - Eclat/003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.mp4
33.3 MB
18 - Support Vector Machine (SVM)/001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.mp4
33.2 MB
36 - Artificial Neural Networks/006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.mp4
33.0 MB
29 - Apriori/002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.mp4
32.1 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.mp4
31.9 MB
43 - Model Selection/001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.mp4
31.1 MB
20 - Naive Bayes/004 Why is Naive Bayes Called Naive Understanding the Algorithm--'s Assumptions.mp4
30.8 MB
14 - Regression Model Selection in R/002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.mp4
30.4 MB
14 - Regression Model Selection in R/001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.mp4
28.8 MB
36 - Artificial Neural Networks/007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.mp4
28.7 MB
27 - Hierarchical Clustering/002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.mp4
28.4 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.mp4
28.0 MB
36 - Artificial Neural Networks/003 Neural Network Basics Understanding Activation Functions in Deep Learning.mp4
27.4 MB
33 - Thompson Sampling/002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.mp4
26.5 MB
32 - Upper Confidence Bound (UCB)/009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.mp4
26.4 MB
09 - Support Vector Regression (SVR)/001 How Does Support Vector Regression --(SVR--) Differ from Linear Regression.mp4
26.4 MB
21 - Decision Tree Classification/001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.mp4
26.3 MB
24 - Evaluating Classification Models Performance/001 Logistic Regression Interpreting Predictions and Errors in Data Science.mp4
25.8 MB
27 - Hierarchical Clustering/001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.mp4
25.4 MB
33 - Thompson Sampling/006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.mp4
25.0 MB
07 - Multiple Linear Regression/024 Mastering Feature Selection Backward Elimination in R for Linear Regression.mp4
24.5 MB
32 - Upper Confidence Bound (UCB)/008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.mp4
24.1 MB
37 - Convolutional Neural Networks/014 Step 4 CNN Training - Epochs, Loss Function --& Metrics in TensorFlow.mp4
23.9 MB
11 - Random Forest Regression/001 Understanding Random Forest Algorithm Intuition and Application in ML.mp4
23.8 MB
07 - Multiple Linear Regression/004 How to Handle Categorical Variables in Linear Regression Models.mp4
23.8 MB
32 - Upper Confidence Bound (UCB)/005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.mp4
23.5 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.mp4
23.3 MB
26 - K-Means Clustering/015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.mp4
22.7 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.mp4
21.8 MB
37 - Convolutional Neural Networks/004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.mp4
21.6 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.mp4
21.5 MB
36 - Artificial Neural Networks/016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.mp4
21.1 MB
21 - Decision Tree Classification/005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.mp4
20.4 MB
24 - Evaluating Classification Models Performance/004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.mp4
20.4 MB
17 - K-Nearest Neighbors (K-NN)/005 Step 1 - Implementing KNN Classification in R Setup --& Data Preparation.mp4
20.4 MB
19 - Kernel SVM/008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.mp4
20.3 MB
18 - Support Vector Machine (SVM)/005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.mp4
20.2 MB
06 - Simple Linear Regression/012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.mp4
20.2 MB
10 - Decision Tree Regression/008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.mp4
20.1 MB
32 - Upper Confidence Bound (UCB)/007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.mp4
20.1 MB
18 - Support Vector Machine (SVM)/002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.mp4
20.0 MB
22 - Random Forest Classification/003 Step 2 Random Forest Evaluation - Confusion Matrix --& Accuracy Metrics.mp4
19.9 MB
17 - K-Nearest Neighbors (K-NN)/002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.mp4
19.8 MB
22 - Random Forest Classification/005 Step 2 Random Forest Classification - Visualizing Predictions --& Results.mp4
19.8 MB
27 - Hierarchical Clustering/007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.mp4
19.8 MB
16 - Logistic Regression/024 Step 5b Logistic Regression - Linear Classifiers --& Prediction Boundaries.mp4
19.7 MB
19 - Kernel SVM/007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.mp4
19.7 MB
04 - Data Preprocessing in R/005 Using R--'s Factor Function to Handle Categorical Variables in Data Analysis.mp4
19.6 MB
20 - Naive Bayes/006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.mp4
19.6 MB
20 - Naive Bayes/003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.mp4
19.5 MB
16 - Logistic Regression/018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.mp4
19.5 MB
19 - Kernel SVM/002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.mp4
19.4 MB
09 - Support Vector Regression (SVR)/012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.mp4
19.4 MB
26 - K-Means Clustering/012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.mp4
19.3 MB
03 - Data Preprocessing in Python/017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.mp4
19.3 MB
21 - Decision Tree Classification/003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.mp4
19.3 MB
21 - Decision Tree Classification/002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.mp4
19.3 MB
17 - K-Nearest Neighbors (K-NN)/004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.mp4
19.3 MB
13 - Regression Model Selection in Python/003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.mp4
19.3 MB
23 - Classification Model Selection in Python/004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.mp4
19.3 MB
26 - K-Means Clustering/016 Step 1 - K-Means Clustering in R Importing --& Exploring Segmentation Data.mp4
19.3 MB
19 - Kernel SVM/006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.mp4
19.3 MB
16 - Logistic Regression/009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.mp4
19.3 MB
03 - Data Preprocessing in Python/010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.mp4
19.3 MB
20 - Naive Bayes/005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.mp4
19.3 MB
06 - Simple Linear Regression/004 Step 1b Data Preprocessing for Linear Regression Import --& Split Data in Python.mp4
19.3 MB
26 - K-Means Clustering/013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.mp4
19.3 MB
27 - Hierarchical Clustering/004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.mp4
19.3 MB
27 - Hierarchical Clustering/006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.mp4
19.2 MB
09 - Support Vector Regression (SVR)/008 Step 3 SVM Regression Creating --& Training SVR Model with RBF Kernel in Python.mp4
19.2 MB
08 - Polynomial Regression/019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.mp4
19.2 MB
22 - Random Forest Classification/002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.mp4
19.2 MB
08 - Polynomial Regression/006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.mp4
19.2 MB
03 - Data Preprocessing in Python/020 Step 1 - Feature Scaling in ML Why It--'s Crucial for Data Preprocessing.mp4
19.2 MB
16 - Logistic Regression/006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.mp4
19.2 MB
11 - Random Forest Regression/003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.mp4
19.2 MB
21 - Decision Tree Classification/004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.mp4
19.2 MB
22 - Random Forest Classification/004 Step 1 Random Forest Classifier - From Template to Implementation in R.mp4
19.2 MB
04 - Data Preprocessing in R/004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.mp4
19.2 MB
11 - Random Forest Regression/004 Step 1 - Building a Random Forest Model in R Regression Tutorial.mp4
19.2 MB
08 - Polynomial Regression/003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.mp4
19.2 MB
16 - Logistic Regression/023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.mp4
19.2 MB
03 - Data Preprocessing in Python/009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.mp4
19.2 MB
03 - Data Preprocessing in Python/023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.mp4
19.1 MB
08 - Polynomial Regression/004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.mp4
19.1 MB
07 - Multiple Linear Regression/008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.mp4
19.1 MB
18 - Support Vector Machine (SVM)/003 Step 2 - Building a Support Vector Machine Model with Sklearn--'s SVC in Python.mp4
19.1 MB
06 - Simple Linear Regression/014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.mp4
19.1 MB
06 - Simple Linear Regression/009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.mp4
19.0 MB
03 - Data Preprocessing in Python/013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.mp4
19.0 MB
16 - Logistic Regression/014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.mp4
19.0 MB
11 - Random Forest Regression/002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.mp4
19.0 MB
16 - Logistic Regression/012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.mp4
19.0 MB
07 - Multiple Linear Regression/012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.mp4
19.0 MB
23 - Classification Model Selection in Python/005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.mp4
19.0 MB
17 - K-Nearest Neighbors (K-NN)/003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.mp4
19.0 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.mp4
18.9 MB
23 - Classification Model Selection in Python/003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.mp4
18.9 MB
16 - Logistic Regression/005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.mp4
18.9 MB
06 - Simple Linear Regression/008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.mp4
18.9 MB
26 - K-Means Clustering/009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.mp4
18.9 MB
33 - Thompson Sampling/003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.mp4
18.8 MB
36 - Artificial Neural Networks/009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.mp4
18.7 MB
26 - K-Means Clustering/017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.mp4
18.7 MB
09 - Support Vector Regression (SVR)/003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.mp4
18.7 MB
03 - Data Preprocessing in Python/006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.mp4
18.7 MB
27 - Hierarchical Clustering/008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.mp4
18.6 MB
18 - Support Vector Machine (SVM)/006 Step 2 Creating --& Evaluating Linear SVM Classifier in R - Predictions --& Results.mp4
18.6 MB
08 - Polynomial Regression/005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.mp4
18.5 MB
16 - Logistic Regression/003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.mp4
18.5 MB
27 - Hierarchical Clustering/009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.mp4
18.5 MB
26 - K-Means Clustering/010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.mp4
18.5 MB
21 - Decision Tree Classification/006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.mp4
18.4 MB
19 - Kernel SVM/009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.mp4
18.3 MB
16 - Logistic Regression/020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.mp4
18.3 MB
01 - Welcome to the course! Here we will help you get started in the best conditions/004 How to Use Google Colab --& Machine Learning Course Folder.mp4
18.3 MB
08 - Polynomial Regression/007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.mp4
18.3 MB
07 - Multiple Linear Regression/014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.mp4
18.2 MB
16 - Logistic Regression/011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.mp4
18.1 MB
01 - Welcome to the course! Here we will help you get started in the best conditions/005 Getting Started with R Programming Install R and RStudio on Windows --& Mac.mp4
18.0 MB
09 - Support Vector Regression (SVR)/005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.mp4
18.0 MB
07 - Multiple Linear Regression/015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.mp4
18.0 MB
39 - Principal Component Analysis (PCA)/003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.mp4
17.9 MB
06 - Simple Linear Regression/015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.mp4
17.8 MB
07 - Multiple Linear Regression/020 Step 2a - Multiple Linear Regression in R Building --& Interpreting the Regressor.mp4
17.7 MB
12 - Evaluating Regression Models Performance/002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.mp4
17.7 MB
22 - Random Forest Classification/006 Step 3 - Evaluating Random Forest Performance Test Set Results --& Overfitting.mp4
17.7 MB
11 - Random Forest Regression/006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.mp4
17.6 MB
11 - Random Forest Regression/005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.mp4
17.6 MB
08 - Polynomial Regression/020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.mp4
17.6 MB
04 - Data Preprocessing in R/010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.mp4
17.6 MB
26 - K-Means Clustering/008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.mp4
17.5 MB
16 - Logistic Regression/027 Optimizing R Scripts for Machine Learning Building a Classification Template.mp4
17.4 MB
36 - Artificial Neural Networks/008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.mp4
17.3 MB
03 - Data Preprocessing in Python/002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.mp4
17.3 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.mp4
17.3 MB
08 - Polynomial Regression/016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.mp4
17.3 MB
03 - Data Preprocessing in Python/001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.mp4
17.3 MB
02 - -------------------- Part 1 Data Preprocessing --------------------/004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.mp4
17.1 MB
16 - Logistic Regression/025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.mp4
17.1 MB
08 - Polynomial Regression/015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.mp4
17.0 MB
27 - Hierarchical Clustering/011 Step 2 Using H.clust in R - Building --& Interpreting Dendrograms for Clustering.mp4
17.0 MB
03 - Data Preprocessing in Python/004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv--(--).mp4
16.9 MB
30 - Eclat/001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.mp4
16.8 MB
19 - Kernel SVM/010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.mp4
16.7 MB
08 - Polynomial Regression/001 Understanding Polynomial Linear Regression Applications and Examples.mp4
16.6 MB
22 - Random Forest Classification/001 Understanding Random Forest Decision Trees and Majority Voting Explained.mp4
16.5 MB
06 - Simple Linear Regression/003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.mp4
16.3 MB
04 - Data Preprocessing in R/009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.mp4
16.2 MB
08 - Polynomial Regression/014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.mp4
16.2 MB
08 - Polynomial Regression/013 Step 2b - Building a Polynomial Regression Model Adding Squared --& Cubed Terms.mp4
16.1 MB
10 - Decision Tree Regression/006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.mp4
16.1 MB
10 - Decision Tree Regression/004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.mp4
16.1 MB
09 - Support Vector Regression (SVR)/006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling --(Python.mp4
16.0 MB
10 - Decision Tree Regression/007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.mp4
16.0 MB
26 - K-Means Clustering/014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.mp4
16.0 MB
04 - Data Preprocessing in R/007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.mp4
15.9 MB
26 - K-Means Clustering/007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.mp4
15.9 MB
20 - Naive Bayes/008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.mp4
15.8 MB
43 - Model Selection/002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.mp4
15.8 MB
17 - K-Nearest Neighbors (K-NN)/007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.mp4
15.7 MB
27 - Hierarchical Clustering/005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.mp4
15.7 MB
17 - K-Nearest Neighbors (K-NN)/001 K-Nearest Neighbors --(KNN--) Explained A Beginner--'s Guide to Classification.mp4
15.7 MB
08 - Polynomial Regression/012 Step 2a - Building Linear --& Polynomial Regression Models in R A Comparison.mp4
15.7 MB
20 - Naive Bayes/009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.mp4
15.6 MB
13 - Regression Model Selection in Python/006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.mp4
15.5 MB
03 - Data Preprocessing in Python/021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.mp4
15.3 MB
13 - Regression Model Selection in Python/002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.mp4
15.3 MB
07 - Multiple Linear Regression/011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.mp4
15.2 MB
03 - Data Preprocessing in Python/005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.mp4
15.2 MB
06 - Simple Linear Regression/011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.mp4
15.2 MB
10 - Decision Tree Regression/002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.mp4
15.1 MB
01 - Welcome to the course! Here we will help you get started in the best conditions/002 Get Excited about ML Predict Car Purchases with Python --& Scikit-learn in 5 mins.mp4
15.1 MB
03 - Data Preprocessing in Python/014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.mp4
15.1 MB
04 - Data Preprocessing in R/006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4
15.0 MB
17 - K-Nearest Neighbors (K-NN)/006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.mp4
14.9 MB
07 - Multiple Linear Regression/013 Step 3b - Scikit-Learn Building --& Training Multiple Linear Regression Models.mp4
14.9 MB
06 - Simple Linear Regression/007 Step 3 - Using Scikit-Learn--'s Predict Method for Linear Regression in Python.mp4
14.8 MB
07 - Multiple Linear Regression/022 Step 3 - How to Use predict--(--) Function in R for Multiple Linear Regression.mp4
14.6 MB
10 - Decision Tree Regression/009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.mp4
14.5 MB
07 - Multiple Linear Regression/010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.mp4
14.5 MB
04 - Data Preprocessing in R/008 Feature Scaling in ML Step 1 Why It--'s Crucial for Data Preprocessing.mp4
14.3 MB
03 - Data Preprocessing in Python/012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.mp4
14.3 MB
07 - Multiple Linear Regression/021 Step 2b Statistical Significance - P-values --& Stars in Regression.mp4
14.1 MB
06 - Simple Linear Regression/016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.mp4
14.0 MB
37 - Convolutional Neural Networks/008 Deep Learning Basics How Convolutional Neural Networks --(CNNs--) Process Images.mp4
14.0 MB
26 - K-Means Clustering/004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.mp4
13.8 MB
07 - Multiple Linear Regression/003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity --& More.mp4
13.7 MB
13 - Regression Model Selection in Python/007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.mp4
13.6 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/003 Deep NLP --& Sequence-to-Sequence Models Exploring Natural Language Processing.mp4
13.5 MB
07 - Multiple Linear Regression/019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.mp4
12.9 MB
23 - Classification Model Selection in Python/002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.mp4
12.9 MB
16 - Logistic Regression/004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.mp4
12.9 MB
08 - Polynomial Regression/017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.mp4
12.9 MB
08 - Polynomial Regression/008 Step 4a Predicting Salaries - Linear Regression in Python --(Array Input Guide--).mp4
12.9 MB
13 - Regression Model Selection in Python/004 Step 3 Evaluating Regression Models - R-Squared --& Performance Metrics Explained.mp4
12.9 MB
06 - Simple Linear Regression/006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.mp4
12.8 MB
26 - K-Means Clustering/011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.mp4
12.8 MB
10 - Decision Tree Regression/003 Step 1b Uploading --& Preprocessing Data for Decision Tree Regression in Python.mp4
12.8 MB
16 - Logistic Regression/007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.mp4
12.8 MB
13 - Regression Model Selection in Python/005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn--'s Metrics.mp4
12.8 MB
09 - Support Vector Regression (SVR)/013 Step 2 - Support Vector Regression Building a Predictive Model in Python.mp4
12.7 MB
03 - Data Preprocessing in Python/016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.mp4
12.6 MB
10 - Decision Tree Regression/010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.mp4
12.6 MB
07 - Multiple Linear Regression/018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.mp4
12.6 MB
06 - Simple Linear Regression/005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.mp4
12.6 MB
03 - Data Preprocessing in Python/018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.mp4
12.5 MB
32 - Upper Confidence Bound (UCB)/004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.mp4
12.5 MB
26 - K-Means Clustering/005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.mp4
12.5 MB
08 - Polynomial Regression/002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.mp4
12.5 MB
40 - Linear Discriminant Analysis (LDA)/001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.mp4
12.4 MB
03 - Data Preprocessing in Python/022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.mp4
12.3 MB
27 - Hierarchical Clustering/010 Step 1 - R Data Import for Clustering Annual Income --& Spending Score Analysis.mp4
12.3 MB
09 - Support Vector Regression (SVR)/009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.mp4
12.3 MB
08 - Polynomial Regression/018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.mp4
12.3 MB
07 - Multiple Linear Regression/001 Startup Success Prediction Regression Model for VC Fund Decision-Making.mp4
12.2 MB
08 - Polynomial Regression/010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.mp4
12.1 MB
06 - Simple Linear Regression/013 Step 3 - How to Use predict--(--) Function in R for Linear Regression Analysis.mp4
12.1 MB
16 - Logistic Regression/015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.mp4
12.1 MB
08 - Polynomial Regression/011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.mp4
12.0 MB
26 - K-Means Clustering/003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.mp4
12.0 MB
09 - Support Vector Regression (SVR)/010 Step 5a - How to Plot Support Vector Regression --(SVR--) Models Step-by-Step Guide.mp4
12.0 MB
20 - Naive Bayes/010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.mp4
11.9 MB
09 - Support Vector Regression (SVR)/011 Step 5b - SVR Scaling --& Inverse Transformation in Python.mp4
11.9 MB
08 - Polynomial Regression/009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.mp4
11.8 MB
16 - Logistic Regression/001 Understanding Logistic Regression Predicting Categorical Outcomes.mp4
11.6 MB
39 - Principal Component Analysis (PCA)/001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.mp4
11.6 MB
03 - Data Preprocessing in Python/003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.mp4
11.5 MB
09 - Support Vector Regression (SVR)/007 Step 2c SVR Data Prep - Scaling X --& Y Independently with StandardScaler.mp4
11.4 MB
16 - Logistic Regression/008 Step 3b - Training Logistic Regression Model Fit Method for Classification.mp4
11.3 MB
09 - Support Vector Regression (SVR)/004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.mp4
11.3 MB
09 - Support Vector Regression (SVR)/002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.mp4
11.2 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.mp4
11.1 MB
16 - Logistic Regression/013 Step 6b Evaluating Classification Models - Confusion Matrix --& Accuracy Metrics.mp4
11.1 MB
37 - Convolutional Neural Networks/001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4
11.0 MB
27 - Hierarchical Clustering/012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.mp4
10.8 MB
16 - Logistic Regression/016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.mp4
10.8 MB
19 - Kernel SVM/001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.mp4
10.6 MB
10 - Decision Tree Regression/005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.mp4
10.6 MB
16 - Logistic Regression/019 Step 2 - How to Create a Logistic Regression Classifier Using R--'s GLM Function.mp4
10.5 MB
27 - Hierarchical Clustering/013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.mp4
10.1 MB
16 - Logistic Regression/002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.mp4
10.1 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.mp4
9.9 MB
33 - Thompson Sampling/009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.mp4
9.9 MB
32 - Upper Confidence Bound (UCB)/013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.mp4
9.8 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.mp4
9.7 MB
26 - K-Means Clustering/006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.mp4
9.6 MB
16 - Logistic Regression/021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.mp4
9.1 MB
04 - Data Preprocessing in R/003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.mp4
8.9 MB
18 - Support Vector Machine (SVM)/004 Step 3 - Understanding Linear SVM Limitations Why It Didn--'t Beat kNN Classifier.mp4
8.7 MB
23 - Classification Model Selection in Python/006 Step 4 - Model Selection Process Evaluating Classification Algorithms.mp4
8.6 MB
27 - Hierarchical Clustering/014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.mp4
8.5 MB
07 - Multiple Linear Regression/009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.mp4
8.4 MB
12 - Evaluating Regression Models Performance/001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.mp4
8.3 MB
36 - Artificial Neural Networks/001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.mp4
8.3 MB
15 - -------------------- Part 3 Classification --------------------/002 What is Classification in Machine Learning Fundamentals and Applications.mp4
8.1 MB
07 - Multiple Linear Regression/002 Multiple Linear Regression Independent Variables --& Prediction Models.mp4
7.9 MB
19 - Kernel SVM/004 Understanding Different Types of Kernel Functions for Machine Learning.mp4
7.8 MB
06 - Simple Linear Regression/001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.mp4
7.7 MB
26 - K-Means Clustering/001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.mp4
7.3 MB
24 - Evaluating Classification Models Performance/002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.mp4
7.2 MB
07 - Multiple Linear Regression/005 Multicollinearity in Regression Understanding the Dummy Variable Trap.mp4
7.1 MB
34 - -------------------- Part 7 Natural Language Processing --------------------/019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.mp4
6.8 MB
02 - -------------------- Part 1 Data Preprocessing --------------------/003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.mp4
6.6 MB
04 - Data Preprocessing in R/002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.mp4
6.3 MB
06 - Simple Linear Regression/002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.mp4
6.3 MB
37 - Convolutional Neural Networks/006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.mp4
6.1 MB
26 - K-Means Clustering/002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.mp4
5.9 MB
16 - Logistic Regression/010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.mp4
5.9 MB
20 - Naive Bayes/007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.mp4
5.2 MB
04 - Data Preprocessing in R/001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.mp4
5.2 MB
02 - -------------------- Part 1 Data Preprocessing --------------------/002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.mp4
3.8 MB
13 - Regression Model Selection in Python/008 Regression-Bonus.zip
373.2 kB
14 - Regression Model Selection in R/003 Regression-Bonus.zip
373.2 kB
13 - Regression Model Selection in Python/001 Machine-Learning-A-Z-Model-Selection.zip
165.8 kB
23 - Classification Model Selection in Python/001 Machine-Learning-A-Z-Model-Selection.zip
163.8 kB
03 - Data Preprocessing in Python/024 Coding exercise 5 Feature scaling for Machine Learning.html
94.0 kB
30 - Eclat/003 Eclat.zip
49.7 kB
43 - Model Selection/004 Optimizing SVM Models with GridSearchCV A Step-by-Step Python Tutorial.srt
44.6 kB
37 - Convolutional Neural Networks/016 Hands-on CNN Training Using Jupyter Notebook for Image Classification.srt
38.4 kB
20 - Naive Bayes/001 Understanding Bayes--' Theorem Intuitively From Probability to Machine Learning.srt
37.8 kB
37 - Convolutional Neural Networks/013 Step 3 - TensorFlow CNN Convolution to Output Layer for Vision Tasks.srt
37.5 kB
41 - Kernel PCA/002 Implementing Kernel PCA for Non-Linear Data Step-by-Step Guide.srt
37.2 kB
29 - Apriori/003 Step 2 - Creating a List of Transactions for Market Basket Analysis in Python.srt
36.2 kB
39 - Principal Component Analysis (PCA)/002 Step 1 PCA in Python Reducing Wine Dataset Features with Scikit-learn.srt
35.4 kB
29 - Apriori/005 Step 4 Visualizing Apriori Algorithm Results for Product Deals in Python.srt
35.1 kB
37 - Convolutional Neural Networks/007 Step 4 - Fully Connected Layers in CNNs Optimizing Feature Combination.srt
34.8 kB
40 - Linear Discriminant Analysis (LDA)/003 Step-by-Step Guide Applying LDA for Feature Extraction in Machine Learning.srt
34.4 kB
33 - Thompson Sampling/001 Understanding Thompson Sampling Algorithm Intuition and Implementation.srt
34.2 kB
29 - Apriori/008 Step 3 Optimizing Product Placement - Apriori Algorithm, Lift --& Confidence.srt
34.0 kB
32 - Upper Confidence Bound (UCB)/006 Step 4 - Python for RL Coding the UCB Algorithm Step-by-Step.srt
33.8 kB
29 - Apriori/006 Step 1 - Creating a Sparse Matrix for Association Rule Mining in R.srt
33.6 kB
03 - Data Preprocessing in Python/011 Coding Exercise 2 Handling Missing Data in a Dataset for Machine Learning.html
33.5 kB
37 - Convolutional Neural Networks/009 Deep Learning Essentials Understanding Softmax and Cross-Entropy in CNNs.srt
32.8 kB
43 - Model Selection/005 Evaluating ML Model Accuracy K-Fold Cross-Validation Implementation in R.srt
32.8 kB
33 - Thompson Sampling/008 Step 1 - Thompson Sampling vs UCB Optimizing Ad Click-Through Rates in R.srt
32.5 kB
36 - Artificial Neural Networks/011 Step 2 - TensorFlow 2.0 Tutorial Preprocessing Data for Customer Churn Model.srt
32.2 kB
36 - Artificial Neural Networks/002 Deep Learning Basics Exploring Neurons, Synapses, and Activation Functions.srt
32.2 kB
37 - Convolutional Neural Networks/012 Step 2 - Keras ImageDataGenerator Prevent Overfitting in CNN Models.srt
31.3 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/024 Step 10 - Building a Document-Term Matrix for NLP Text Classification.srt
31.2 kB
29 - Apriori/001 Apriori Algorithm Uncovering Hidden Patterns in Data Mining Association Rules.srt
31.1 kB
32 - Upper Confidence Bound (UCB)/011 Step 2 - UCB Algorithm in R Calculating Average Reward --& Confidence Interval.srt
31.1 kB
44 - XGBoost/001 How to Use XGBoost in Python for Cancer Prediction with High Accuracy.srt
30.7 kB
44 - XGBoost/003 XGBoost Tutorial Implementing Gradient Boosting for Classification Problems.srt
30.6 kB
36 - Artificial Neural Networks/015 Step 1 - How to Preprocess Data for Artificial Neural Networks in R.srt
30.6 kB
07 - Multiple Linear Regression/023 Optimizing Multiple Regression Models Backward Elimination Technique in R.srt
30.5 kB
07 - Multiple Linear Regression/007 Backward Elimination Building Robust Multiple Linear Regression Models.srt
30.5 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/010 Step 5 - Tokenization and Feature Extraction for Naive Bayes Sentiment Analysis.srt
30.3 kB
40 - Linear Discriminant Analysis (LDA)/002 Mastering Linear Discriminant Analysis Step-by-Step Python Implementation.srt
30.2 kB
37 - Convolutional Neural Networks/015 Step 5 - Making Single Predictions with Convolutional Neural Networks in Python.srt
30.2 kB
24 - Evaluating Classification Models Performance/005 Classification-Pros-Cons.pdf
30.0 kB
32 - Upper Confidence Bound (UCB)/012 Step 3 Optimizing Ad Selection - UCB --& Multi-Armed Bandit Algorithm Explained.srt
29.4 kB
37 - Convolutional Neural Networks/003 Step 1 - Understanding Convolution in CNNs Feature Detection and Feature Maps.srt
29.4 kB
33 - Thompson Sampling/005 Step 3 - Python Code for Thompson Sampling Maximizing Random Beta Distributions.srt
29.4 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/005 Implementing Bag of Words in NLP A Step-by-Step Tutorial.srt
29.2 kB
45 - Annex Logistic Regression (Long Explanation)/001 Logistic Regression Intuition.srt
29.0 kB
36 - Artificial Neural Networks/018 Step 4 - H2O Deep Learning Making Predictions and Evaluating Model Accuracy.srt
28.5 kB
32 - Upper Confidence Bound (UCB)/003 Step 1 - Upper Confidence Bound Solving Multi-Armed Bandit Problem in Python.srt
28.4 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/014 Step 1 - Text Classification Using Bag-of-Words and Random Forest in R.srt
28.2 kB
32 - Upper Confidence Bound (UCB)/010 Step 1 - Exploring Upper Confidence Bound in R Multi-Armed Bandit Problems.srt
28.0 kB
20 - Naive Bayes/002 Understanding Naive Bayes Algorithm Probabilistic Classification Explained.srt
27.9 kB
43 - Model Selection/003 K-Fold Cross-Validation in Python Improve Machine Learning Model Performance.srt
27.8 kB
36 - Artificial Neural Networks/014 Step 5 - Implementing ANN for Churn Prediction From Model to Confusion Matrix.srt
27.2 kB
32 - Upper Confidence Bound (UCB)/002 Upper Confidence Bound Algorithm Solving Multi-Armed Bandit Problems in ML.srt
27.2 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/008 Step 3 - Text Cleaning for NLP Remove Punctuation and Convert to Lowercase.srt
27.1 kB
37 - Convolutional Neural Networks/002 Introduction to CNNs Understanding Deep Learning for Computer Vision.srt
26.9 kB
32 - Upper Confidence Bound (UCB)/001 Multi-Armed Bandit Exploration vs Exploitation in Reinforcement Learning.srt
26.7 kB
29 - Apriori/004 Step 3 - Configuring Apriori Function Support, Confidence, and Lift in Python.srt
26.5 kB
27 - Hierarchical Clustering/016 Clustering-Pros-Cons.pdf
26.4 kB
37 - Convolutional Neural Networks/005 Step 2 - Max Pooling in CNNs Enhancing Spatial Invariance for Image Recognition.srt
25.9 kB
29 - Apriori/007 Step 2 - Optimizing Apriori Model Choosing Minimum Support and Confidence.srt
25.5 kB
30 - Eclat/002 Python Tutorial Adapting Apriori to Eclat for Efficient Frequent Itemset Mining.srt
25.5 kB
36 - Artificial Neural Networks/012 Step 3 - Designing ANN Sequential Model --& Dense Layers for Deep Learning.srt
25.1 kB
43 - Model Selection/006 Optimizing SVM Models with Grid Search A Step-by-Step R Tutorial.srt
24.3 kB
36 - Artificial Neural Networks/017 Step 3 Building Deep Learning Model - H2O Neural Network Layer Config.srt
24.2 kB
36 - Artificial Neural Networks/004 How Do Neural Networks Work Step-by-Step Guide to Deep Learning Algorithms.srt
23.5 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/009 Step 4 - Text Preprocessing Stemming and Stop Word Removal for NLP in Python.srt
23.4 kB
03 - Data Preprocessing in Python/015 Coding Exercise 3 Encoding Categorical Data for Machine Learning.html
23.3 kB
39 - Principal Component Analysis (PCA)/006 Step 3 - Implementing PCA and SVM for Customer Segmentation Practical Guide.srt
23.2 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/023 Step 9 Removing Extra Spaces for NLP Sentiment Analysis Text Cleaning.srt
23.0 kB
36 - Artificial Neural Networks/005 How Do Neural Networks Learn Deep Learning Fundamentals Explained.srt
22.3 kB
41 - Kernel PCA/001 Kernel PCA in Python Improving Classification Accuracy with Feature Extraction.srt
22.2 kB
39 - Principal Component Analysis (PCA)/004 Step 1 in R - Understanding Principal Component Analysis for Feature Extraction.srt
22.1 kB
20 - Naive Bayes/011 Naive Bayes Quiz.html
21.8 kB
35 - -------------------- Part 8 Deep Learning --------------------/002 Introduction to Deep Learning From Historical Context to Modern Applications.srt
21.6 kB
04 - Data Preprocessing in R/011 Data Preprocessing Quiz.html
21.4 kB
19 - Kernel SVM/011 Kernel SVM Quiz.html
21.4 kB
07 - Multiple Linear Regression/026 Multiple Linear Regression Quiz.html
21.1 kB
18 - Support Vector Machine (SVM)/007 SVM Quiz.html
21.1 kB
22 - Random Forest Classification/007 Random Forest Classification Quiz.html
21.1 kB
24 - Evaluating Classification Models Performance/006 Evaluating Classiification Model Performance Quiz.html
21.0 kB
06 - Simple Linear Regression/017 Simple Linear Regression Quiz.html
21.0 kB
16 - Logistic Regression/029 Logistic Regression Quiz.html
21.0 kB
08 - Polynomial Regression/021 Polynomial Regression Quiz.html
21.0 kB
09 - Support Vector Regression (SVR)/014 SVR Quiz.html
20.9 kB
21 - Decision Tree Classification/007 Decision Tree Classification Quiz.html
20.9 kB
11 - Random Forest Regression/007 Random Forest Regression Quiz.html
20.9 kB
07 - Multiple Linear Regression/006 Understanding P-Values and Statistical Significance in Hypothesis Testing.srt
20.8 kB
12 - Evaluating Regression Models Performance/003 Evaluating Regression Models Performance Quiz.html
20.8 kB
36 - Artificial Neural Networks/013 Step 4 - Train Neural Network Compile --& Fit for Customer Churn Prediction.srt
20.8 kB
29 - Apriori/009 Apriori Quiz.html
20.8 kB
33 - Thompson Sampling/010 Thompson Sampling Quiz.html
20.7 kB
27 - Hierarchical Clustering/015 Hierarchical Clustering Quiz.html
20.7 kB
32 - Upper Confidence Bound (UCB)/014 Upper Confidence Bound Quiz.html
20.7 kB
40 - Linear Discriminant Analysis (LDA)/004 LDA Quiz.html
20.7 kB
39 - Principal Component Analysis (PCA)/007 PCA Quiz.html
20.7 kB
35 - -------------------- Part 8 Deep Learning --------------------/003 Deep Learning Quiz.html
20.7 kB
26 - K-Means Clustering/018 K-Means Clustering Quiz.html
20.7 kB
10 - Decision Tree Regression/011 Decision Tree Regression Quiz.html
20.7 kB
36 - Artificial Neural Networks/021 ANN QUIZ.html
20.6 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/026 Natural Language Processing Quiz.html
20.6 kB
30 - Eclat/004 Eclat Quiz.html
20.6 kB
37 - Convolutional Neural Networks/018 CNN Quiz.html
20.6 kB
33 - Thompson Sampling/004 Step 2 - Optimizing Ad Selection with Thompson Sampling Algorithm in Python.srt
20.6 kB
17 - K-Nearest Neighbors (K-NN)/008 K-Nearest Neighbor Quiz.html
20.6 kB
39 - Principal Component Analysis (PCA)/005 Step 2 - Using preProcess Function in R for PCA Extracting Principal Components.srt
19.8 kB
27 - Hierarchical Clustering/003 Mastering Hierarchical Clustering Dendrogram Analysis and Threshold Setting.srt
19.8 kB
19 - Kernel SVM/003 Kernel Trick SVM Machine Learning for Non-Linear Classification.srt
19.8 kB
37 - Convolutional Neural Networks/011 Step 1 Intro to CNNs for Image Classification.srt
19.6 kB
10 - Decision Tree Regression/001 How to Build a Regression Tree Step-by-Step Guide for Machine Learning.srt
19.1 kB
19 - Kernel SVM/005 Mastering Support Vector Regression Non-Linear SVR with RBF Kernel Explained.srt
18.9 kB
24 - Evaluating Classification Models Performance/003 Understanding CAP Curves Assessing Model Performance in Data Science 2024.srt
18.7 kB
36 - Artificial Neural Networks/010 Step 1 ANN in Python Predicting Customer Churn with TensorFlow.srt
18.3 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/004 From IfElse Rules to CNNs Evolution of Natural Language Processing.srt
18.2 kB
36 - Artificial Neural Networks/006 Deep Learning Fundamentals Gradient Descent vs Brute Force Optimization.srt
18.0 kB
20 - Naive Bayes/004 Why is Naive Bayes Called Naive Understanding the Algorithm--'s Assumptions.srt
17.8 kB
18 - Support Vector Machine (SVM)/001 Support Vector Machines Explained Hyperplanes and Support Vectors in ML.srt
17.7 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/011 Step 6 - Training and Evaluating a Naive Bayes Classifier for Sentiment Analysis.srt
17.7 kB
30 - Eclat/003 Eclat vs Apriori Simplified Association Rule Learning in Data Mining.srt
17.6 kB
43 - Model Selection/001 Mastering Model Evaluation K-Fold Cross-Validation Techniques Explained.srt
16.8 kB
27 - Hierarchical Clustering/001 How to Perform Hierarchical Clustering Step-by-Step Guide for Machine Learning.srt
16.4 kB
27 - Hierarchical Clustering/002 Visualizing Cluster Dissimilarity Dendrograms in Hierarchical Clustering.srt
16.2 kB
29 - Apriori/002 Step 1 - Association Rule Learning Boost Sales with Python Data Mining.srt
16.1 kB
14 - Regression Model Selection in R/002 Linear Regression Analysis Interpreting Coefficients for Business Decisions.srt
15.4 kB
36 - Artificial Neural Networks/007 Stochastic vs Batch Gradient Descent Deep Learning Fundamentals.srt
15.2 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/016 Step 2 - NLP Data Preprocessing in R Importing TSV Files for Sentiment Analysis.srt
15.2 kB
21 - Decision Tree Classification/001 How Decision Tree Algorithms Work Step-by-Step Guide with Examples.srt
15.2 kB
32 - Upper Confidence Bound (UCB)/008 Step 6 - Reinforcement Learning Finalizing UCB Algorithm in Python.srt
15.1 kB
07 - Multiple Linear Regression/024 Mastering Feature Selection Backward Elimination in R for Linear Regression.srt
14.9 kB
14 - Regression Model Selection in R/001 Optimizing Regression Models R-Squared vs Adjusted R-Squared Explained.srt
14.7 kB
36 - Artificial Neural Networks/003 Neural Network Basics Understanding Activation Functions in Deep Learning.srt
14.5 kB
32 - Upper Confidence Bound (UCB)/005 Step 3 - Python Code for Upper Confidence Bound Setting Up Key Variables.srt
14.3 kB
09 - Support Vector Regression (SVR)/001 How Does Support Vector Regression --(SVR--) Differ from Linear Regression.srt
14.0 kB
33 - Thompson Sampling/002 Deterministic vs Probabilistic UCB and Thompson Sampling in Machine Learning.srt
13.9 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/007 Step 2 - Importing TSV Data for Sentiment Analysis Python NLP Data Processing.srt
13.8 kB
32 - Upper Confidence Bound (UCB)/009 Step 7 - Visualizing UCB Algorithm Results Histogram Analysis in Python.srt
13.2 kB
19 - Kernel SVM/002 Support Vector Machines Transforming Non-Linear Data for Linear Separation.srt
12.9 kB
24 - Evaluating Classification Models Performance/001 Logistic Regression Interpreting Predictions and Errors in Data Science.srt
12.9 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/006 Step 1 - Getting Started with Natural Language Processing Sentiment Analysis.srt
12.8 kB
32 - Upper Confidence Bound (UCB)/007 Step 5 - Coding Upper Confidence Bound Optimizing Ad Selection in Python.srt
12.7 kB
06 - Simple Linear Regression/009 Step 4b - Evaluating Linear Regression Model Performance on Test Data.srt
12.6 kB
33 - Thompson Sampling/006 Step 4 - Beating UCB with Thompson Sampling Python Multi-Armed Bandit Tutorial.srt
12.6 kB
37 - Convolutional Neural Networks/014 Step 4 CNN Training - Epochs, Loss Function --& Metrics in TensorFlow.srt
12.6 kB
07 - Multiple Linear Regression/004 How to Handle Categorical Variables in Linear Regression Models.srt
12.4 kB
16 - Logistic Regression/005 Step 2a Python Data Preprocessing for Logistic Regression Dataset Prep.srt
12.2 kB
16 - Logistic Regression/011 Step 5 - Comparing Predicted vs Real Results Python Logistic Regression Guide.srt
12.2 kB
26 - K-Means Clustering/015 Step 5c - Analyzing Customer Segments Insights from K-means Clustering.srt
11.8 kB
11 - Random Forest Regression/001 Understanding Random Forest Algorithm Intuition and Application in ML.srt
11.8 kB
36 - Artificial Neural Networks/016 Step 2 - How to Install and Initialize H2O for Efficient Deep Learning in R.srt
11.7 kB
03 - Data Preprocessing in Python/002 Step 2 - Data Preprocessing Techniques From Raw Data to ML-Ready Datasets.srt
11.7 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/017 Step 3 - NLP in R Initialising a Corpus for Sentiment Analysis.srt
11.6 kB
09 - Support Vector Regression (SVR)/005 Step 2a - Mastering Feature Scaling for Support Vector Regression in Python.srt
11.4 kB
37 - Convolutional Neural Networks/004 Step 1b - Applying ReLU to Convolutional Layers Breaking Up Image Linearity.srt
11.2 kB
22 - Random Forest Classification/003 Step 2 Random Forest Evaluation - Confusion Matrix --& Accuracy Metrics.srt
11.0 kB
02 - -------------------- Part 1 Data Preprocessing --------------------/004 Feature Scaling in Machine Learning Normalization vs Standardization Explained.srt
11.0 kB
23 - Classification Model Selection in Python/004 Step 2 - Optimizing Model Selection Streamlined Classification Code in Python.srt
11.0 kB
19 - Kernel SVM/007 Step 2 - Mastering Kernel SVM Improving Accuracy with Non-Linear Classifiers.srt
11.0 kB
33 - Thompson Sampling/003 Step 1 - Python Implementation of Thompson Sampling for Bandit Problems.srt
10.9 kB
20 - Naive Bayes/003 Bayes Theorem in Machine Learning Step-by-Step Probability Calculation.srt
10.9 kB
08 - Polynomial Regression/003 Step 1b - Setting Up Data for Linear vs Polynomial Regression Comparison.srt
10.9 kB
23 - Classification Model Selection in Python/005 Step 3 - Evaluating Classification Algorithms Accuracy Metrics in Python.srt
10.9 kB
01 - Welcome to the course! Here we will help you get started in the best conditions/004 How to Use Google Colab --& Machine Learning Course Folder.srt
10.9 kB
22 - Random Forest Classification/004 Step 1 Random Forest Classifier - From Template to Implementation in R.srt
10.8 kB
03 - Data Preprocessing in Python/008 Coding Exercise 1 Importing and Preprocessing a Dataset for Machine Learning.html
10.8 kB
11 - Random Forest Regression/005 Step 2 - Visualizing Random Forest Regression Interpreting Stairs and Splits.srt
10.7 kB
07 - Multiple Linear Regression/012 Step 3a - Scikit-learn for Multiple Linear Regression Efficient Model Building.srt
10.7 kB
26 - K-Means Clustering/016 Step 1 - K-Means Clustering in R Importing --& Exploring Segmentation Data.srt
10.7 kB
21 - Decision Tree Classification/003 Step 2 - Training a Decision Tree Classifier Optimizing Performance in Python.srt
10.7 kB
06 - Simple Linear Regression/004 Step 1b Data Preprocessing for Linear Regression Import --& Split Data in Python.srt
10.7 kB
27 - Hierarchical Clustering/007 Step 2c - Interpreting Dendrograms Optimal Clusters in Hierarchical Clustering.srt
10.7 kB
22 - Random Forest Classification/005 Step 2 Random Forest Classification - Visualizing Predictions --& Results.srt
10.7 kB
21 - Decision Tree Classification/002 Step 1 - Implementing Decision Tree Classification in Python with Scikit-learn.srt
10.6 kB
03 - Data Preprocessing in Python/019 Coding Exercise 4 Dataset Splitting and Feature Scaling.html
10.6 kB
13 - Regression Model Selection in Python/003 Step 2 - Creating Generic Code Templates for Various Regression Models in Python.srt
10.6 kB
11 - Random Forest Regression/002 Step 1 - Building a Random Forest Regression Model with Python and Scikit-Learn.srt
10.5 kB
07 - Multiple Linear Regression/008 Step 1a - Hands-On Data Preprocessing for Multiple Linear Regression in Python.srt
10.5 kB
17 - K-Nearest Neighbors (K-NN)/004 Step 3 - Visualizing KNN Decision Boundaries Python Tutorial for Beginners.srt
10.5 kB
10 - Decision Tree Regression/008 Step 2 - Decision Tree Regression Fixing Splits with rpart Control Parameter.srt
10.4 kB
18 - Support Vector Machine (SVM)/002 Step 1 - Building a Support Vector Machine Model with Scikit-learn in Python.srt
10.4 kB
22 - Random Forest Classification/002 Step 1 - Implementing Random Forest Classification in Python with Scikit-Learn.srt
10.3 kB
16 - Logistic Regression/006 Step 2b - Data Preprocessing Feature Scaling Techniques for Logistic Regression.srt
10.3 kB
26 - K-Means Clustering/017 Step 2 - K-Means Algorithm Implementation in R Fitting and Analyzing Mall Data.srt
10.3 kB
08 - Polynomial Regression/019 Step 1 - Building a Reusable Framework for Nonlinear Regression Analysis in R.srt
10.3 kB
03 - Data Preprocessing in Python/020 Step 1 - Feature Scaling in ML Why It--'s Crucial for Data Preprocessing.srt
10.3 kB
03 - Data Preprocessing in Python/013 Step 2 - Handling Categorical Data One-Hot Encoding with ColumnTransformer.srt
10.3 kB
24 - Evaluating Classification Models Performance/004 Mastering CAP Analysis Assessing Classification Models with Accuracy Ratio.srt
10.3 kB
09 - Support Vector Regression (SVR)/012 Step 1 - SVR Tutorial Creating a Support Vector Machine Regressor in R.srt
10.3 kB
17 - K-Nearest Neighbors (K-NN)/003 Step 2 - Building a K-Nearest Neighbors Model Scikit-Learn KNeighborsClassifier.srt
10.3 kB
23 - Classification Model Selection in Python/003 Step 1 - How to Choose the Right Classification Algorithm for Your Dataset.srt
10.3 kB
03 - Data Preprocessing in Python/023 Step 4 - Applying the Same Scaler to Training and Test Sets in Python.srt
10.3 kB
08 - Polynomial Regression/004 Step 2a Linear to Polynomial Regression - Preparing Data for Advanced Models.srt
10.3 kB
03 - Data Preprocessing in Python/006 Step 3 - Preprocessing Data Building X and Y Vectors for ML Model Training.srt
10.3 kB
18 - Support Vector Machine (SVM)/003 Step 2 - Building a Support Vector Machine Model with Sklearn--'s SVC in Python.srt
10.2 kB
08 - Polynomial Regression/005 Step 2b - Transforming Linear to Polynomial Regression A Step-by-Step Guide.srt
10.2 kB
08 - Polynomial Regression/006 Step 3a - Plotting Real vs Predicted Salaries Linear Regression Visualization.srt
10.2 kB
19 - Kernel SVM/006 Step 1 - Python Kernel SVM Applying RBF to Solve Non-Linear Classification.srt
10.2 kB
01 - Welcome to the course! Here we will help you get started in the best conditions/005 Getting Started with R Programming Install R and RStudio on Windows --& Mac.srt
10.2 kB
11 - Random Forest Regression/004 Step 1 - Building a Random Forest Model in R Regression Tutorial.srt
10.2 kB
21 - Decision Tree Classification/004 Step 1 - R Tutorial Creating a Decision Tree Classifier with rpart Library.srt
10.2 kB
20 - Naive Bayes/005 Step 1 - Naive Bayes in Python Applying ML to Social Network Ads Optimisation.srt
10.2 kB
27 - Hierarchical Clustering/004 Step 1 - Getting Started with Hierarchical Clustering Data Setup in Python.srt
10.2 kB
16 - Logistic Regression/018 Step 1 - Data Preprocessing for Logistic Regression in R Preparing Your Dataset.srt
10.2 kB
16 - Logistic Regression/012 Step 6a - Implementing Confusion Matrix and Accuracy Score in Scikit-Learn.srt
10.1 kB
06 - Simple Linear Regression/008 Step 4a - Linear Regression Plotting Real vs Predicted Salaries Visualization.srt
10.1 kB
03 - Data Preprocessing in Python/017 Step 2 - Preparing Data Creating Training and Test Sets in Python for ML Models.srt
10.1 kB
20 - Naive Bayes/006 Step 2 - Python Naive Bayes Training and Evaluating a Classifier on Real Data.srt
10.1 kB
16 - Logistic Regression/024 Step 5b Logistic Regression - Linear Classifiers --& Prediction Boundaries.srt
10.1 kB
06 - Simple Linear Regression/003 Step 1a - Mastering Simple Linear Regression Key Concepts and Implementation.srt
10.1 kB
07 - Multiple Linear Regression/014 Step 4a Comparing Real vs Predicted Profits in Linear Regression - Hands-on Gui.srt
10.1 kB
06 - Simple Linear Regression/012 Step 2 - Fitting Simple Linear Regression in R LM Function and Model Summary.srt
10.1 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/020 Step 6 - Cleaning Text Data Removing Punctuation for NLP and Classification.srt
10.0 kB
17 - K-Nearest Neighbors (K-NN)/002 Step 1 - Python KNN Tutorial Classifying Customer Data for Targeted Marketing.srt
10.0 kB
03 - Data Preprocessing in Python/009 Step 1 - Using Scikit-Learn to Replace Missing Values in Machine Learning.srt
10.0 kB
11 - Random Forest Regression/003 Step 2 - Creating a Random Forest Regressor Key Parameters and Model Fitting.srt
10.0 kB
09 - Support Vector Regression (SVR)/008 Step 3 SVM Regression Creating --& Training SVR Model with RBF Kernel in Python.srt
10.0 kB
21 - Decision Tree Classification/005 Step 2 - Decision Tree Classifier Optimizing Prediction Boundaries in R.srt
10.0 kB
26 - K-Means Clustering/013 Step 5a Visualizing K-Means Clusters of Customer Data with Python Scatter.srt
10.0 kB
19 - Kernel SVM/008 Step 1 - Kernel SVM vs Linear SVM Overcoming Non-Linear Separability in R.srt
9.9 kB
04 - Data Preprocessing in R/005 Using R--'s Factor Function to Handle Categorical Variables in Data Analysis.srt
9.9 kB
26 - K-Means Clustering/010 Step 3b - Optimizing K-means Clustering WCSS and Elbow Method Implementation.srt
9.9 kB
27 - Hierarchical Clustering/006 Step 2b - Visualizing Hierarchical Clustering Dendrogram Basics in Python.srt
9.8 kB
04 - Data Preprocessing in R/010 Essential Steps in Data Preprocessing Preparing Your Dataset for ML Models.srt
9.8 kB
04 - Data Preprocessing in R/004 How to Handle Missing Values in R Data Preprocessing for Machine Learning.srt
9.8 kB
09 - Support Vector Regression (SVR)/003 Step 1a - SVR Model Training Feature Scaling and Dataset Preparation in Python.srt
9.8 kB
08 - Polynomial Regression/016 Step 3c - Polynomial Regression Curve Fitting for Better Predictions.srt
9.8 kB
26 - K-Means Clustering/012 Step 4 - Creating a Dependent Variable from K-Means Clustering Results in Python.srt
9.8 kB
08 - Polynomial Regression/007 Step 3b - Polynomial vs Linear Regression Better Fit with Higher Degrees.srt
9.8 kB
16 - Logistic Regression/023 Step 5a - Interpreting Logistic Regression Plots Prediction Regions Explained.srt
9.8 kB
22 - Random Forest Classification/006 Step 3 - Evaluating Random Forest Performance Test Set Results --& Overfitting.srt
9.7 kB
06 - Simple Linear Regression/014 Step 4a - Plotting Linear Regression Data in R ggplot2 Step-by-Step Guide.srt
9.7 kB
03 - Data Preprocessing in Python/010 Step 2 - Imputing Missing Data in Python SimpleImputer and Numerical Columns.srt
9.7 kB
39 - Principal Component Analysis (PCA)/003 Step 2 - PCA in Action Reducing Dimensions and Predicting Customer Segments.srt
9.7 kB
27 - Hierarchical Clustering/009 Step 3b - Comparing 3 vs 5 Clusters in Hierarchical Clustering Python Example.srt
9.7 kB
30 - Eclat/001 Mastering ECLAT Support-Based Approach to Market Basket Optimization.srt
9.6 kB
16 - Logistic Regression/009 Step 4a - Formatting Single Observation Input for Logistic Regression Predict.srt
9.5 kB
19 - Kernel SVM/009 Step 2 - Building a Gaussian Kernel SVM Classifier for Advanced Machine Learning.srt
9.5 kB
11 - Random Forest Regression/006 Step 3 - Fine-Tuning Random Forest From 10 to 500 Trees for Accurate Prediction.srt
9.5 kB
26 - K-Means Clustering/009 Step 3a - Implementing the Elbow Method for K-Means Clustering in Python.srt
9.5 kB
27 - Hierarchical Clustering/008 Step 3a - Building a Hierarchical Clustering Model with Scikit-learn in Python.srt
9.5 kB
16 - Logistic Regression/003 Step 1a - Building a Logistic Regression Model for Customer Behavior Prediction.srt
9.5 kB
17 - K-Nearest Neighbors (K-NN)/005 Step 1 - Implementing KNN Classification in R Setup --& Data Preparation.srt
9.5 kB
16 - Logistic Regression/027 Optimizing R Scripts for Machine Learning Building a Classification Template.srt
9.5 kB
18 - Support Vector Machine (SVM)/006 Step 2 Creating --& Evaluating Linear SVM Classifier in R - Predictions --& Results.srt
9.5 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/022 Step 8 - Enhancing Text Classification Stemming for Efficient Feature Matrices.srt
9.4 kB
08 - Polynomial Regression/020 Step 2 - Mastering Regression Model Visualization Increasing Data Resolution.srt
9.4 kB
07 - Multiple Linear Regression/015 Step 4b - ML in Python Evaluating Multiple Linear Regression Accuracy.srt
9.4 kB
16 - Logistic Regression/014 Step 7a - Visualizing Logistic Regression Decision Boundaries in Python 2D Plot.srt
9.4 kB
17 - K-Nearest Neighbors (K-NN)/001 K-Nearest Neighbors --(KNN--) Explained A Beginner--'s Guide to Classification.srt
9.4 kB
27 - Hierarchical Clustering/011 Step 2 Using H.clust in R - Building --& Interpreting Dendrograms for Clustering.srt
9.4 kB
26 - K-Means Clustering/008 Step 2b K-Means Clustering - Optimizing Features for 2D Visualization.srt
9.3 kB
08 - Polynomial Regression/015 Step 3b Visualizing Linear Regression - Plotting Predictions vs Observations.srt
9.2 kB
18 - Support Vector Machine (SVM)/005 Step 1 - Building a Linear SVM Classifier in R Data Import and Initial Setup.srt
9.2 kB
03 - Data Preprocessing in Python/001 Step 1 - Data Preprocessing in Python Preparing Your Dataset for ML Models.srt
9.2 kB
07 - Multiple Linear Regression/020 Step 2a - Multiple Linear Regression in R Building --& Interpreting the Regressor.srt
9.1 kB
36 - Artificial Neural Networks/009 Bank Customer Churn Prediction Machine Learning Model with TensorFlow.srt
9.1 kB
03 - Data Preprocessing in Python/004 Step 1 - Machine Learning Basics Importing Datasets Using Pandas read_csv--(--).srt
9.0 kB
19 - Kernel SVM/010 Step 3 Visualizing Kernel SVM - Non-Linear Classification in Machine Learning.srt
9.0 kB
21 - Decision Tree Classification/006 Step 3 - Decision Tree Visualization Exploring Splits and Conditions in R.srt
9.0 kB
08 - Polynomial Regression/001 Understanding Polynomial Linear Regression Applications and Examples.srt
8.9 kB
10 - Decision Tree Regression/007 Step 1 - Creating a Decision Tree Regressor Using rpart Function in R.srt
8.9 kB
10 - Decision Tree Regression/009 Step 3 Non-Continuous Regression - Decision Tree Visualization Challenges.srt
8.9 kB
04 - Data Preprocessing in R/007 Step 2 - Preparing Data Creating Training and Test Sets in R for ML Models.srt
8.9 kB
10 - Decision Tree Regression/004 Step 2 - Implementing DecisionTreeRegressor A Step-by-Step Guide in Python.srt
8.8 kB
09 - Support Vector Regression (SVR)/013 Step 2 - Support Vector Regression Building a Predictive Model in Python.srt
8.8 kB
36 - Artificial Neural Networks/008 Deep Learning Fundamentals Training Neural Networks Step-by-Step.srt
8.8 kB
10 - Decision Tree Regression/006 Step 4 - Visualizing Decision Tree Regression High-Resolution Results.srt
8.7 kB
06 - Simple Linear Regression/015 Step 4b - Creating a Scatter Plot with Regression Line in R Using ggplot2.srt
8.7 kB
12 - Evaluating Regression Models Performance/002 Understanding Adjusted R-Squared Key Differences from R-Squared Explained.srt
8.6 kB
07 - Multiple Linear Regression/011 Step 2b - Multiple Linear Regression in Python Preparing Your Dataset.srt
8.6 kB
16 - Logistic Regression/020 Step 3 - How to Use R for Logistic Regression Prediction Step-by-Step Guide.srt
8.6 kB
43 - Model Selection/002 How to Master the Bias-Variance Tradeoff in Machine Learning Models.srt
8.6 kB
01 - Welcome to the course! Here we will help you get started in the best conditions/002 Get Excited about ML Predict Car Purchases with Python --& Scikit-learn in 5 mins.srt
8.5 kB
06 - Simple Linear Regression/011 Step 1 - Data Preprocessing in R Preparing for Linear Regression Modeling.srt
8.5 kB
13 - Regression Model Selection in Python/006 Step 1 - Selecting the Best Regression Model R-squared Evaluation in Python.srt
8.5 kB
18 - Support Vector Machine (SVM)/005 SVM.zip
8.5 kB
16 - Logistic Regression/001 Understanding Logistic Regression Predicting Categorical Outcomes.srt
8.4 kB
26 - K-Means Clustering/005 Step 1a - Python K-Means Tutorial Identifying Customer Patterns in Mall Data.srt
8.4 kB
17 - K-Nearest Neighbors (K-NN)/007 Step 3 - Implementing KNN Classification in R Adapting the Classifier Template.srt
8.4 kB
16 - Logistic Regression/025 Step 5c - Data Viz in R Colorizing Pixels for Logistic Regression.srt
8.4 kB
26 - K-Means Clustering/014 Step 5b - Visualizing K-Means Clusters Plotting Customer Segments in Python.srt
8.3 kB
06 - Simple Linear Regression/007 Step 3 - Using Scikit-Learn--'s Predict Method for Linear Regression in Python.srt
8.3 kB
27 - Hierarchical Clustering/005 Step 2a - Implementing Hierarchical Clustering Building a Dendrogram with SciPy.srt
8.3 kB
08 - Polynomial Regression/014 Step 3a Visualizing Regression Results - Creating Scatter Plots with ggplot2 in.srt
8.3 kB
26 - K-Means Clustering/004 K-Means++ Algorithm Solving the Random Initialization Trap in Clustering.srt
8.3 kB
08 - Polynomial Regression/013 Step 2b - Building a Polynomial Regression Model Adding Squared --& Cubed Terms.srt
8.2 kB
22 - Random Forest Classification/001 Understanding Random Forest Decision Trees and Majority Voting Explained.srt
8.2 kB
06 - Simple Linear Regression/016 Step 4c - Comparing Training vs Test Set Predictions in Linear Regression.srt
8.2 kB
09 - Support Vector Regression (SVR)/006 Step 2b Reshaping Data for SVR - Preparing Y Vector for Feature Scaling --(Python.srt
8.2 kB
04 - Data Preprocessing in R/006 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.srt
8.2 kB
03 - Data Preprocessing in Python/005 Step 2 - Using Pandas iloc for Feature Selection in ML Data Preprocessing.srt
8.2 kB
10 - Decision Tree Regression/002 Step 1a - Decision Tree Regression Building a Model without Feature Scaling.srt
8.2 kB
04 - Data Preprocessing in R/009 How to Scale Numeric Features in R for Machine Learning Preprocessing - Step 2.srt
8.2 kB
08 - Polynomial Regression/012 Step 2a - Building Linear --& Polynomial Regression Models in R A Comparison.srt
8.1 kB
07 - Multiple Linear Regression/013 Step 3b - Scikit-Learn Building --& Training Multiple Linear Regression Models.srt
8.1 kB
26 - K-Means Clustering/007 Step 2a - K-Means Clustering in Python Selecting Relevant Features for Analysis.srt
8.1 kB
03 - Data Preprocessing in Python/021 Step 2 - How to Scale Numeric Features in Python for ML Preprocessing.srt
8.1 kB
20 - Naive Bayes/008 Step 1 - Getting Started with Naive Bayes Algorithm in R for Classification.srt
8.0 kB
07 - Multiple Linear Regression/003 Understanding Linear Regression Assumptions Linearity, Homoscedasticity --& More.srt
7.9 kB
17 - K-Nearest Neighbors (K-NN)/006 Step 2 - Building a KNN Classifier Preparing Training and Test Sets in R.srt
7.9 kB
20 - Naive Bayes/009 Step 2 - Troubleshooting Naive Bayes Classification Empty Prediction Vectors.srt
7.9 kB
23 - Classification Model Selection in Python/002 Mastering the Confusion Matrix True Positives, Negatives, and Errors.srt
7.9 kB
03 - Data Preprocessing in Python/014 Step 3 - Preprocessing Categorical Data One-Hot and Label Encoding Techniques.srt
7.9 kB
07 - Multiple Linear Regression/010 Step 2a - Hands-on Multiple Linear Regression Preparing Data in Python.srt
7.9 kB
13 - Regression Model Selection in Python/002 Step 1 - Mastering Regression Toolkit Comparing Models for Optimal Performance.srt
7.9 kB
01 - Welcome to the course! Here we will help you get started in the best conditions/001 Welcome Challenge!.html
7.8 kB
12 - Evaluating Regression Models Performance/001 Understanding R-squared Evaluating Goodness of Fit in Regression Models.srt
7.7 kB
08 - Polynomial Regression/002 Step 1a - Building a Polynomial Regression Model for Salary Prediction in Python.srt
7.5 kB
13 - Regression Model Selection in Python/004 Step 3 Evaluating Regression Models - R-Squared --& Performance Metrics Explained.srt
7.4 kB
07 - Multiple Linear Regression/022 Step 3 - How to Use predict--(--) Function in R for Multiple Linear Regression.srt
7.4 kB
06 - Simple Linear Regression/006 Step 2b - Machine Learning Basics Training a Linear Regression Model in Python.srt
7.3 kB
04 - Data Preprocessing in R/008 Feature Scaling in ML Step 1 Why It--'s Crucial for Data Preprocessing.srt
7.3 kB
16 - Logistic Regression/004 Step 1b - Implementing Logistic Regression in Python Data Preprocessing Guide.srt
7.3 kB
13 - Regression Model Selection in Python/007 Step 2 - Selecting the Best Regression Model Random Forest vs. SVR Performance.srt
7.2 kB
10 - Decision Tree Regression/003 Step 1b Uploading --& Preprocessing Data for Decision Tree Regression in Python.srt
7.2 kB
03 - Data Preprocessing in Python/012 Step 1 - One-Hot Encoding Transforming Categorical Features for ML Algorithms.srt
7.1 kB
46 - Congratulations!! Don't forget your Prize )/001 Huge Congrats for completing the challenge!.html
7.1 kB
26 - K-Means Clustering/003 How to Use the Elbow Method in K-Means Clustering A Step-by-Step Guide.srt
7.1 kB
09 - Support Vector Regression (SVR)/002 RBF Kernel SVR From Linear to Non-Linear Support Vector Regression.srt
7.0 kB
37 - Convolutional Neural Networks/008 Deep Learning Basics How Convolutional Neural Networks --(CNNs--) Process Images.srt
7.0 kB
07 - Multiple Linear Regression/021 Step 2b Statistical Significance - P-values --& Stars in Regression.srt
7.0 kB
13 - Regression Model Selection in Python/005 Step 4 - Implementing R-Squared Score in Python with Scikit-Learn--'s Metrics.srt
6.9 kB
08 - Polynomial Regression/018 Step 4b - Predicting Salaries with Polynomial Regression A Practical Example.srt
6.9 kB
27 - Hierarchical Clustering/010 Step 1 - R Data Import for Clustering Annual Income --& Spending Score Analysis.srt
6.9 kB
08 - Polynomial Regression/017 Step 4a - How to Make Single Predictions Using Polynomial Regression in R.srt
6.8 kB
16 - Logistic Regression/007 Step 3a - How to Import and Use LogisticRegression Class from Scikit-learn.srt
6.8 kB
32 - Upper Confidence Bound (UCB)/004 Step 2 Implementing UCB Algorithm in Python - Data Preparation.srt
6.7 kB
06 - Simple Linear Regression/005 Step 2a - Building a Simple Linear Regression Model with Scikit-learn in Python.srt
6.7 kB
10 - Decision Tree Regression/010 Step 4 - Visualizing Decision Tree Understanding Intervals and Predictions.srt
6.7 kB
08 - Polynomial Regression/009 Step 4b Python Polynomial Regression - Predicting Salaries Accurately.srt
6.6 kB
07 - Multiple Linear Regression/019 Step 1b - Preparing Datasets for Multiple Linear Regression in R.srt
6.6 kB
08 - Polynomial Regression/008 Step 4a Predicting Salaries - Linear Regression in Python --(Array Input Guide--).srt
6.6 kB
08 - Polynomial Regression/010 Step 1a - Implementing Polynomial Regression in R HR Salary Analysis Case Study.srt
6.6 kB
07 - Multiple Linear Regression/018 Step 1a - Data Preprocessing for MLR Handling Categorical Data.srt
6.5 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/003 Deep NLP --& Sequence-to-Sequence Models Exploring Natural Language Processing.srt
6.5 kB
26 - K-Means Clustering/011 Step 3c - Plotting the Elbow Method Graph for K-Means Clustering in Python.srt
6.5 kB
09 - Support Vector Regression (SVR)/009 Step 4 - SVR Model Prediction Handling Scaled Data and Inverse Transformation.srt
6.5 kB
09 - Support Vector Regression (SVR)/010 Step 5a - How to Plot Support Vector Regression --(SVR--) Models Step-by-Step Guide.srt
6.5 kB
03 - Data Preprocessing in Python/016 Step 1 - How to Prepare Data for Machine Learning Training vs Test Sets.srt
6.5 kB
09 - Support Vector Regression (SVR)/011 Step 5b - SVR Scaling --& Inverse Transformation in Python.srt
6.5 kB
03 - Data Preprocessing in Python/022 Step 3 - Implementing Feature Scaling Fit and Transform Methods Explained.srt
6.4 kB
07 - Multiple Linear Regression/001 Startup Success Prediction Regression Model for VC Fund Decision-Making.srt
6.4 kB
03 - Data Preprocessing in Python/003 Machine Learning Toolkit Importing NumPy, Matplotlib, and Pandas Libraries.srt
6.4 kB
08 - Polynomial Regression/011 Step 1b - ML Fundamentals Preparing Data for Polynomial Regression.srt
6.2 kB
16 - Logistic Regression/015 Step 7b - Interpreting Logistic Regression Results Prediction Regions Explained.srt
6.2 kB
03 - Data Preprocessing in Python/018 Step 3 - Splitting Data into Training and Test Sets Best Practices in Python.srt
6.2 kB
16 - Logistic Regression/002 Logistic Regression Finding the Best Fit Curve Using Maximum Likelihood.srt
6.2 kB
37 - Convolutional Neural Networks/001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.srt
6.2 kB
40 - Linear Discriminant Analysis (LDA)/001 LDA Intuition Maximizing Class Separation in Machine Learning Algorithms.srt
6.1 kB
20 - Naive Bayes/010 Step 3 - Visualizing Naive Bayes Results Creating Confusion Matrix and Graphs.srt
6.1 kB
09 - Support Vector Regression (SVR)/004 Step 1b - SVR in Python Importing Libraries and Dataset for Machine Learning.srt
6.1 kB
06 - Simple Linear Regression/013 Step 3 - How to Use predict--(--) Function in R for Linear Regression Analysis.srt
6.0 kB
26 - K-Means Clustering/001 What is Clustering in Machine Learning Introduction to Unsupervised Learning.srt
6.0 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/021 Step 7 - Simplifying Corpus Using SnowballC Package to Remove Stop Words in R.srt
6.0 kB
07 - Multiple Linear Regression/016 Multiple Linear Regression in Python - Backward Elimination.html
5.9 kB
39 - Principal Component Analysis (PCA)/001 PCA Algorithm Intuition Reducing Dimensions in Unsupervised Learning.srt
5.8 kB
16 - Logistic Regression/013 Step 6b Evaluating Classification Models - Confusion Matrix --& Accuracy Metrics.srt
5.8 kB
33 - Thompson Sampling/009 Step 2 - Reinforcement Learning Thompson Sampling Outperforms UCB Algorithm.srt
5.7 kB
24 - Evaluating Classification Models Performance/005 Conclusion of Part 3 - Classification.html
5.7 kB
16 - Logistic Regression/008 Step 3b - Training Logistic Regression Model Fit Method for Classification.srt
5.7 kB
09 - Support Vector Regression (SVR)/007 Step 2c SVR Data Prep - Scaling X --& Y Independently with StandardScaler.srt
5.7 kB
16 - Logistic Regression/016 Step 7c - Visualizing Logistic Regression Performance on New Data in Python.srt
5.6 kB
10 - Decision Tree Regression/005 Step 3 - Implementing Decision Tree Regression in Python Making Predictions.srt
5.5 kB
27 - Hierarchical Clustering/012 Step 3 - Implementing Hierarchical Clustering Using Cat Tree Method in R.srt
5.4 kB
06 - Simple Linear Regression/002 How to Find the Best Fit Line Understanding Ordinary Least Squares Regression.srt
5.4 kB
19 - Kernel SVM/001 From Linear to Non-Linear SVM Exploring Higher Dimensional Spaces.srt
5.3 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/018 Step 4 - NLP Data Cleaning Lowercase Transformation in R for Text Analysis.srt
5.3 kB
32 - Upper Confidence Bound (UCB)/013 Step 4 - UCB Algorithm Performance Analyzing Ad Selection with Histograms.srt
5.2 kB
16 - Logistic Regression/019 Step 2 - How to Create a Logistic Regression Classifier Using R--'s GLM Function.srt
5.1 kB
23 - Classification Model Selection in Python/006 Step 4 - Model Selection Process Evaluating Classification Algorithms.srt
5.1 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/002 NLP Basics Understanding Bag of Words and Its Applications in Machine Learning.srt
5.1 kB
26 - K-Means Clustering/006 Step 1b K-Means Clustering - Data Preparation in Google ColabJupyter.srt
5.1 kB
26 - K-Means Clustering/002 K-Means Clustering Tutorial Visualizing the Machine Learning Algorithm.srt
4.9 kB
18 - Support Vector Machine (SVM)/004 Step 3 - Understanding Linear SVM Limitations Why It Didn--'t Beat kNN Classifier.srt
4.9 kB
04 - Data Preprocessing in R/003 R Tutorial Importing and Viewing Datasets for Data Preprocessing.srt
4.8 kB
36 - Artificial Neural Networks/001 Understanding CNN Layers Convolution, ReLU, Pooling, and Flattening Explained.srt
4.6 kB
07 - Multiple Linear Regression/009 Step 1b - Hands-On Guide Implementing Multiple Linear Regression in Python.srt
4.6 kB
33 - Thompson Sampling/007 Additional Resource for this Section.html
4.6 kB
27 - Hierarchical Clustering/013 Step 4 - Cluster Plot Method Visualizing Hierarchical Clustering Results in R.srt
4.5 kB
27 - Hierarchical Clustering/014 Step 5 - Hierarchical Clustering in R Understanding Customer Spending Patterns.srt
4.5 kB
16 - Logistic Regression/021 Step 4 - How to Assess Model Accuracy Using a Confusion Matrix in R.srt
4.4 kB
15 - -------------------- Part 3 Classification --------------------/002 What is Classification in Machine Learning Fundamentals and Applications.srt
4.2 kB
07 - Multiple Linear Regression/002 Multiple Linear Regression Independent Variables --& Prediction Models.srt
4.2 kB
16 - Logistic Regression/022 Warning - Update.html
4.1 kB
46 - Congratulations!! Don't forget your Prize )/002 Bonus How To UNLOCK Top Salaries (Live Training).html
4.1 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/001 Welcome to Part 7 - Natural Language Processing.html
4.1 kB
13 - Regression Model Selection in Python/008 Conclusion of Part 2 - Regression.html
4.0 kB
14 - Regression Model Selection in R/003 Conclusion of Part 2 - Regression.html
4.0 kB
03 - Data Preprocessing in Python/007 For Python learners, summary of Object-oriented programming classes & objects.html
3.9 kB
31 - -------------------- Part 6 Reinforcement Learning --------------------/001 Welcome to Part 6 - Reinforcement Learning.html
3.8 kB
07 - Multiple Linear Regression/005 Multicollinearity in Regression Understanding the Dummy Variable Trap.srt
3.8 kB
19 - Kernel SVM/004 Understanding Different Types of Kernel Functions for Machine Learning.srt
3.8 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/025 Homework Challenge.html
3.7 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/019 Step 5 - Sentiment Analysis Data Cleaning Removing Numbers with TM Map.srt
3.7 kB
06 - Simple Linear Regression/001 Simple Linear Regression Understanding the Equation and Potato Yield Prediction.srt
3.7 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/013 Homework Challenge.html
3.6 kB
24 - Evaluating Classification Models Performance/002 Machine Learning Model Evaluation Accuracy Paradox and Better Metrics.srt
3.6 kB
07 - Multiple Linear Regression/017 Multiple Linear Regression in Python - EXTRA CONTENT.html
3.5 kB
38 - -------------------- Part 9 Dimensionality Reduction --------------------/001 Welcome to Part 9 - Dimensionality Reduction.html
3.5 kB
06 - Simple Linear Regression/010 Simple Linear Regression in Python - Additional Lecture.html
3.5 kB
44 - XGBoost/002 Model Selection and Boosting Additional Content.html
3.5 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/012 Natural Language Processing in Python - EXTRA.html
3.4 kB
04 - Data Preprocessing in R/002 Data Preprocessing Tutorial Understanding Independent vs Dependent Variables.srt
3.4 kB
02 - -------------------- Part 1 Data Preprocessing --------------------/003 Data Preprocessing Importance of Training-Test Split in ML Model Evaluation.srt
3.4 kB
01 - Welcome to the course! Here we will help you get started in the best conditions/006 EXTRA Use ChatGPT to Boost your ML Skills.html
3.3 kB
37 - Convolutional Neural Networks/006 Step 3 - Understanding Flattening in Convolutional Neural Network Architecture.srt
3.3 kB
23 - Classification Model Selection in Python/001 Make sure you have this Model Selection folder ready.html
3.3 kB
13 - Regression Model Selection in Python/001 Make sure you have this Model Selection folder ready.html
3.3 kB
36 - Artificial Neural Networks/019 Deep Learning Additional Content.html
3.3 kB
42 - -------------------- Part 10 Model Selection & Boosting --------------------/001 Welcome to Part 10 - Model Selection & Boosting.html
3.2 kB
37 - Convolutional Neural Networks/017 Deep Learning Additional Content #2.html
3.2 kB
35 - -------------------- Part 8 Deep Learning --------------------/001 Welcome to Part 8 - Deep Learning.html
3.2 kB
15 - -------------------- Part 3 Classification --------------------/001 Welcome to Part 3 - Classification.html
3.1 kB
16 - Logistic Regression/010 Step 4b Predicted vs. Real Purchase Decisions in Logistic Regression.srt
3.1 kB
16 - Logistic Regression/028 Machine Learning Regression and Classification EXTRA.html
3.1 kB
05 - -------------------- Part 2 Regression --------------------/001 Welcome to Part 2 - Regression.html
3.1 kB
07 - Multiple Linear Regression/025 Multiple Linear Regression in R - Automatic Backward Elimination.html
3.1 kB
37 - Convolutional Neural Networks/010 Make sure you have your dataset ready.html
3.1 kB
25 - -------------------- Part 4 Clustering --------------------/001 Welcome to Part 4 - Clustering.html
3.0 kB
16 - Logistic Regression/017 Logistic Regression in Python - Step 7 (Colour-blind friendly image).html
3.0 kB
16 - Logistic Regression/026 Logistic Regression in R - Step 5 (Colour-blind friendly image).html
3.0 kB
20 - Naive Bayes/007 Step 3 - Analyzing Naive Bayes Algorithm Results Accuracy and Predictions.srt
3.0 kB
34 - -------------------- Part 7 Natural Language Processing --------------------/015 Warning - Update.html
3.0 kB
16 - Logistic Regression/030 EXTRA CONTENT Logistic Regression Practical Case Study.html
2.9 kB
04 - Data Preprocessing in R/001 Data Preprocessing for Beginners Preparing Your Dataset for Machine Learning.srt
2.8 kB
02 - -------------------- Part 1 Data Preprocessing --------------------/002 Machine Learning Workflow Importing, Modeling, and Evaluating Your ML Model.srt
2.8 kB
02 - -------------------- Part 1 Data Preprocessing --------------------/001 Welcome to Part 1 - Data Preprocessing.html
2.8 kB
36 - Artificial Neural Networks/020 EXTRA CONTENT ANN Case Study.html
2.8 kB
28 - -------------------- Part 5 Association Rule Learning --------------------/001 Welcome to Part 5 - Association Rule Learning.html
2.8 kB
01 - Welcome to the course! Here we will help you get started in the best conditions/003 Get all the Datasets, Codes and Slides here.html
2.7 kB
27 - Hierarchical Clustering/016 Conclusion of Part 4 - Clustering.html
2.7 kB
07 - Multiple Linear Regression/external-links.txt
70 Bytes
07 - Multiple Linear Regression/003 Download-the-PDF.url
68 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>