搜索
[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子名称
[Tutorialsplanet.NET] Udemy - Artificial Intelligence Reinforcement Learning in Python
磁力链接/BT种子简介
种子哈希:
7ece9ad79a686344ca348e18aacfe308a27d4dc7
文件大小:
3.2G
已经下载:
61
次
下载速度:
极快
收录时间:
2021-04-10
最近下载:
2024-05-26
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:7ECE9AD79A686344CA348E18AACFE308A27D4DC7
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
阿姨合集
爆射吞精
旧歌
催眠地铁
야노
留精
惨遭
新流出
interstellar.2014
满脸
颤动
二宮
嗨大
小烟
爆乳国模
户外
折腰01
衬衫小狗
吊钟
大鸡巴
rpg game
用利
第一会所新片
男精
黄播
h4610-ki240919
换妻换上
撸
组
传媒idg
文件列表
10/1. Windows-Focused Environment Setup 2018.mp4
195.4 MB
4. Markov Decision Proccesses/11. Bellman Examples.mp4
91.4 MB
11/3. Proof that using Jupyter Notebook is the same as not using it.mp4
82.1 MB
2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).mp4
78.1 MB
5. Dynamic Programming/4. Iterative Policy Evaluation in Code.mp4
71.8 MB
9. Stock Trading Project with Reinforcement Learning/6. Code pt 2.mp4
68.5 MB
1. Welcome/5. Warmup.mp4
65.7 MB
4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).mp4
64.7 MB
5. Dynamic Programming/9. Policy Iteration in Code.mp4
59.1 MB
4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).mp4
58.8 MB
2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).mp4
58.6 MB
2. Return of the Multi-Armed Bandit/12. UCB1 Theory.mp4
58.2 MB
3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.mp4
57.3 MB
4. Markov Decision Proccesses/2. Gridworld.mp4
56.6 MB
9. Stock Trading Project with Reinforcement Learning/2. Data and Environment.mp4
54.5 MB
2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.mp4
54.5 MB
5. Dynamic Programming/10. Policy Iteration in Windy Gridworld.mp4
53.9 MB
2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.mp4
53.7 MB
2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.mp4
52.8 MB
9. Stock Trading Project with Reinforcement Learning/5. Code pt 1.mp4
52.1 MB
9. Stock Trading Project with Reinforcement Learning/8. Code pt 4.mp4
51.5 MB
2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.mp4
50.9 MB
5. Dynamic Programming/6. Iterative Policy Evaluation for Windy Gridworld in Code.mp4
49.2 MB
5. Dynamic Programming/3. Gridworld in Code.mp4
49.1 MB
5. Dynamic Programming/12. Value Iteration in Code.mp4
47.9 MB
9. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.mp4
47.1 MB
10/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
46.1 MB
2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.mp4
45.8 MB
2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.mp4
45.5 MB
5. Dynamic Programming/5. Windy Gridworld in Code.mp4
43.5 MB
2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.mp4
43.5 MB
3. High Level Overview of Reinforcement Learning/3. From Bandits to Full Reinforcement Learning.mp4
43.2 MB
1. Welcome/2. Course Outline and Big Picture.mp4
41.6 MB
4. Markov Decision Proccesses/6. Future Rewards.mp4
41.4 MB
12/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.srt
40.9 MB
12/2. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
40.9 MB
13. Appendix FAQ/2. BONUS Where to get discount coupons and FREE deep learning material.mp4
39.7 MB
13. Appendix FAQ Finale/2. BONUS Where to get discount coupons and FREE deep learning material.mp4
39.7 MB
12/4. Machine Learning and AI Prerequisite Roadmap (pt 2).mp4
39.4 MB
4. Markov Decision Proccesses/1. MDP Section Introduction.mp4
39.0 MB
3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.mp4
38.9 MB
2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.mp4
36.3 MB
1. Welcome/1. Introduction.mp4
35.9 MB
9. Stock Trading Project with Reinforcement Learning/7. Code pt 3.mp4
35.4 MB
2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.mp4
34.4 MB
4. Markov Decision Proccesses/3. Choosing Rewards.mp4
34.1 MB
2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.mp4
32.5 MB
12/3. Machine Learning and AI Prerequisite Roadmap (pt 1).mp4
30.7 MB
2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.mp4
30.1 MB
2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.mp4
29.7 MB
4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).mp4
29.1 MB
2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.mp4
28.7 MB
9. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.mp4
28.1 MB
4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).mp4
28.0 MB
4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).mp4
25.9 MB
2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.mp4
25.8 MB
11/1. How to Code by Yourself (part 1).mp4
25.7 MB
2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.mp4
25.7 MB
2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.mp4
24.7 MB
9. Stock Trading Project with Reinforcement Learning/4. Design of the Program.mp4
24.5 MB
2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).mp4
24.3 MB
1. Welcome/3. Where to get the Code.mp4
23.8 MB
5. Dynamic Programming/2. Designing Your RL Program.mp4
23.4 MB
4. Markov Decision Proccesses/4. The Markov Property.mp4
22.8 MB
2. Return of the Multi-Armed Bandit/14. UCB1 Code.mp4
21.7 MB
4. Markov Decision Proccesses/7. Value Functions.srt
19.5 MB
4. Markov Decision Proccesses/7. Value Functions.mp4
19.5 MB
12/1. How to Succeed in this Course (Long Version).mp4
19.2 MB
2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.mp4
18.8 MB
2. Return of the Multi-Armed Bandit/25. Suggestion Box.mp4
16.9 MB
9. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.mp4
16.6 MB
4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).mp4
16.5 MB
1. Welcome/4. How to Succeed in this Course.mp4
16.5 MB
11/2. How to Code by Yourself (part 2).mp4
15.5 MB
4. Markov Decision Proccesses/14. MDP Summary.mp4
15.0 MB
2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.mp4
14.4 MB
8. Approximation Methods/9. Course Summary and Next Steps.mp4
13.9 MB
2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.mp4
13.4 MB
8. Approximation Methods/8. Semi-Gradient SARSA in Code.mp4
11.1 MB
6. Monte Carlo/6. Monte Carlo Control in Code.mp4
10.7 MB
6. Monte Carlo/5. Monte Carlo Control.mp4
9.7 MB
7. Temporal Difference Learning/5. SARSA in Code.mp4
9.2 MB
6. Monte Carlo/2. Monte Carlo Policy Evaluation.mp4
9.2 MB
8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.mp4
8.8 MB
5. Dynamic Programming/13. Dynamic Programming Summary.mp4
8.7 MB
7. Temporal Difference Learning/4. SARSA.mp4
8.6 MB
6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.mp4
8.4 MB
6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.mp4
8.3 MB
11/4. Python 2 vs Python 3.mp4
8.2 MB
6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.mp4
8.2 MB
8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.mp4
6.9 MB
8. Approximation Methods/2. Linear Models for Reinforcement Learning.mp4
6.8 MB
8. Approximation Methods/1. Approximation Intro.mp4
6.8 MB
8. Approximation Methods/3. Features.mp4
6.5 MB
5. Dynamic Programming/11. Value Iteration.mp4
6.5 MB
7. Temporal Difference Learning/2. TD(0) Prediction.mp4
6.1 MB
6. Monte Carlo/9. Monte Carlo Summary.mp4
6.0 MB
13. Appendix FAQ Finale/1. What is the Appendix.mp4
5.7 MB
13. Appendix FAQ/1. What is the Appendix.mp4
5.7 MB
7. Temporal Difference Learning/7. Q Learning in Code.mp4
5.7 MB
7. Temporal Difference Learning/3. TD(0) Prediction in Code.mp4
5.6 MB
6. Monte Carlo/1. Monte Carlo Intro.mp4
5.2 MB
5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.mp4
5.1 MB
7. Temporal Difference Learning/6. Q Learning.mp4
5.1 MB
8. Approximation Methods/7. Semi-Gradient SARSA.mp4
4.9 MB
6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.mp4
4.8 MB
5. Dynamic Programming/7. Policy Improvement.mp4
4.8 MB
7. Temporal Difference Learning/8. TD Summary.mp4
4.1 MB
5. Dynamic Programming/8. Policy Iteration.mp4
3.3 MB
8. Approximation Methods/4. Monte Carlo Prediction with Approximation.mp4
3.0 MB
7. Temporal Difference Learning/1. Temporal Difference Intro.mp4
2.9 MB
11/1. How to Code by Yourself (part 1).srt
30.9 kB
4. Markov Decision Proccesses/11. Bellman Examples.srt
29.9 kB
2. Return of the Multi-Armed Bandit/16. Bayesian Bandits Thompson Sampling Theory (pt 2).srt
26.3 kB
12/4. Machine Learning and AI Prerequisite Roadmap (pt 2).srt
23.6 kB
2. Return of the Multi-Armed Bandit/12. UCB1 Theory.srt
22.5 kB
4. Markov Decision Proccesses/5. Markov Decision Processes (MDPs).srt
22.4 kB
10/1. Windows-Focused Environment Setup 2018.srt
20.6 kB
1. Welcome/5. Warmup.srt
20.0 kB
4. Markov Decision Proccesses/2. Gridworld.srt
19.6 kB
11/2. How to Code by Yourself (part 2).srt
18.9 kB
2. Return of the Multi-Armed Bandit/15. Bayesian Bandits Thompson Sampling Theory (pt 1).srt
18.8 kB
10/2. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.srt
18.8 kB
5. Dynamic Programming/4. Iterative Policy Evaluation in Code.srt
18.5 kB
5. Dynamic Programming/3. Gridworld in Code.srt
18.5 kB
9. Stock Trading Project with Reinforcement Learning/2. Data and Environment.srt
17.0 kB
2. Return of the Multi-Armed Bandit/19. Thompson Sampling With Gaussian Reward Theory.srt
16.9 kB
12/3. Machine Learning and AI Prerequisite Roadmap (pt 1).srt
16.4 kB
8. Approximation Methods/9. Course Summary and Next Steps.srt
16.3 kB
2. Return of the Multi-Armed Bandit/24. (Optional) Alternative Bandit Designs.srt
15.5 kB
2. Return of the Multi-Armed Bandit/1. Section Introduction The Explore-Exploit Dilemma.srt
15.1 kB
12/1. How to Succeed in this Course (Long Version).srt
14.9 kB
4. Markov Decision Proccesses/6. Future Rewards.srt
14.5 kB
11/3. Proof that using Jupyter Notebook is the same as not using it.srt
14.5 kB
3. High Level Overview of Reinforcement Learning/3. From Bandits to Full Reinforcement Learning.srt
13.6 kB
9. Stock Trading Project with Reinforcement Learning/3. How to Model Q for Q-Learning.srt
13.3 kB
9. Stock Trading Project with Reinforcement Learning/6. Code pt 2.srt
13.1 kB
4. Markov Decision Proccesses/12. Optimal Policy and Optimal Value Function (pt 1).srt
13.1 kB
5. Dynamic Programming/10. Policy Iteration in Windy Gridworld.srt
12.6 kB
4. Markov Decision Proccesses/8. The Bellman Equation (pt 1).srt
12.6 kB
5. Dynamic Programming/9. Policy Iteration in Code.srt
12.5 kB
3. High Level Overview of Reinforcement Learning/1. What is Reinforcement Learning.srt
12.1 kB
2. Return of the Multi-Armed Bandit/2. Applications of the Explore-Exploit Dilemma.srt
12.0 kB
1. Welcome/2. Course Outline and Big Picture.srt
11.4 kB
5. Dynamic Programming/5. Windy Gridworld in Code.srt
11.4 kB
5. Dynamic Programming/6. Iterative Policy Evaluation for Windy Gridworld in Code.srt
11.2 kB
6. Monte Carlo/2. Monte Carlo Policy Evaluation.srt
11.1 kB
2. Return of the Multi-Armed Bandit/3. Epsilon-Greedy Theory.srt
10.7 kB
9. Stock Trading Project with Reinforcement Learning/5. Code pt 1.srt
10.7 kB
6. Monte Carlo/5. Monte Carlo Control.srt
10.5 kB
2. Return of the Multi-Armed Bandit/22. Nonstationary Bandits.srt
10.4 kB
2. Return of the Multi-Armed Bandit/23. Bandit Summary, Real Data, and Online Learning.srt
10.3 kB
5. Dynamic Programming/12. Value Iteration in Code.srt
10.1 kB
7. Temporal Difference Learning/4. SARSA.srt
9.9 kB
4. Markov Decision Proccesses/9. The Bellman Equation (pt 2).srt
9.7 kB
5. Dynamic Programming/13. Dynamic Programming Summary.srt
9.6 kB
2. Return of the Multi-Armed Bandit/7. Epsilon-Greedy in Code.srt
9.6 kB
4. Markov Decision Proccesses/1. MDP Section Introduction.srt
9.6 kB
9. Stock Trading Project with Reinforcement Learning/4. Design of the Program.srt
9.5 kB
4. Markov Decision Proccesses/4. The Markov Property.srt
9.1 kB
9. Stock Trading Project with Reinforcement Learning/8. Code pt 4.srt
9.0 kB
4. Markov Decision Proccesses/10. The Bellman Equation (pt 3).srt
8.9 kB
3. High Level Overview of Reinforcement Learning/2. On Unusual or Unexpected Strategies of RL.srt
8.8 kB
2. Return of the Multi-Armed Bandit/4. Calculating a Sample Mean (pt 1).srt
8.7 kB
2. Return of the Multi-Armed Bandit/21. Why don't we just use a library.srt
8.6 kB
13. Appendix FAQ/2. BONUS Where to get discount coupons and FREE deep learning material.srt
8.5 kB
2. Return of the Multi-Armed Bandit/20. Thompson Sampling With Gaussian Reward Code.srt
8.3 kB
8. Approximation Methods/1. Approximation Intro.srt
8.2 kB
2. Return of the Multi-Armed Bandit/9. Optimistic Initial Values Theory.srt
8.1 kB
13. Appendix FAQ Finale/2. BONUS Where to get discount coupons and FREE deep learning material.srt
8.1 kB
8. Approximation Methods/2. Linear Models for Reinforcement Learning.srt
7.6 kB
9. Stock Trading Project with Reinforcement Learning/1. Stock Trading Project Section Introduction.srt
7.3 kB
2. Return of the Multi-Armed Bandit/5. Epsilon-Greedy Beginner's Exercise Prompt.srt
7.3 kB
6. Monte Carlo/9. Monte Carlo Summary.srt
7.3 kB
5. Dynamic Programming/2. Designing Your RL Program.srt
7.2 kB
2. Return of the Multi-Armed Bandit/8. Comparing Different Epsilons.srt
7.2 kB
5. Dynamic Programming/11. Value Iteration.srt
7.1 kB
1. Welcome/3. Where to get the Code.srt
7.1 kB
8. Approximation Methods/3. Features.srt
7.1 kB
7. Temporal Difference Learning/2. TD(0) Prediction.srt
6.5 kB
8. Approximation Methods/6. TD(0) Semi-Gradient Prediction.srt
6.5 kB
2. Return of the Multi-Armed Bandit/18. Thompson Sampling Code.srt
6.5 kB
6. Monte Carlo/3. Monte Carlo Policy Evaluation in Code.srt
6.3 kB
11/4. Python 2 vs Python 3.srt
6.2 kB
2. Return of the Multi-Armed Bandit/6. Designing Your Bandit Program.srt
6.1 kB
6. Monte Carlo/1. Monte Carlo Intro.srt
6.1 kB
4. Markov Decision Proccesses/3. Choosing Rewards.srt
6.0 kB
9. Stock Trading Project with Reinforcement Learning/7. Code pt 3.srt
6.0 kB
6. Monte Carlo/6. Monte Carlo Control in Code.srt
6.0 kB
7. Temporal Difference Learning/6. Q Learning.srt
6.0 kB
2. Return of the Multi-Armed Bandit/11. Optimistic Initial Values Code.srt
5.9 kB
7. Temporal Difference Learning/5. SARSA in Code.srt
5.7 kB
6. Monte Carlo/7. Monte Carlo Control without Exploring Starts.srt
5.7 kB
8. Approximation Methods/7. Semi-Gradient SARSA.srt
5.6 kB
4. Markov Decision Proccesses/13. Optimal Policy and Optimal Value Function (pt 2).srt
5.6 kB
8. Approximation Methods/8. Semi-Gradient SARSA in Code.srt
5.5 kB
5. Dynamic Programming/1. Intro to Dynamic Programming and Iterative Policy Evaluation.srt
5.5 kB
6. Monte Carlo/4. Policy Evaluation in Windy Gridworld.srt
5.4 kB
5. Dynamic Programming/7. Policy Improvement.srt
5.3 kB
2. Return of the Multi-Armed Bandit/25. Suggestion Box.srt
5.2 kB
7. Temporal Difference Learning/8. TD Summary.srt
4.8 kB
9. Stock Trading Project with Reinforcement Learning/9. Stock Trading Project Discussion.srt
4.7 kB
1. Welcome/1. Introduction.srt
4.6 kB
1. Welcome/4. How to Succeed in this Course.srt
4.5 kB
2. Return of the Multi-Armed Bandit/14. UCB1 Code.srt
4.4 kB
8. Approximation Methods/5. Monte Carlo Prediction with Approximation in Code.srt
4.1 kB
4. Markov Decision Proccesses/14. MDP Summary.srt
4.1 kB
7. Temporal Difference Learning/3. TD(0) Prediction in Code.srt
4.1 kB
13. Appendix FAQ/1. What is the Appendix.srt
3.9 kB
2. Return of the Multi-Armed Bandit/17. Thompson Sampling Beginner's Exercise Prompt.srt
3.9 kB
13. Appendix FAQ Finale/1. What is the Appendix.srt
3.8 kB
6. Monte Carlo/8. Monte Carlo Control without Exploring Starts in Code.srt
3.7 kB
5. Dynamic Programming/8. Policy Iteration.srt
3.5 kB
7. Temporal Difference Learning/7. Q Learning in Code.srt
3.5 kB
7. Temporal Difference Learning/1. Temporal Difference Intro.srt
3.4 kB
2. Return of the Multi-Armed Bandit/10. Optimistic Initial Values Beginner's Exercise Prompt.srt
3.2 kB
2. Return of the Multi-Armed Bandit/13. UCB1 Beginner's Exercise Prompt.srt
3.1 kB
8. Approximation Methods/4. Monte Carlo Prediction with Approximation.srt
2.5 kB
1. Welcome/[Tutorialsplanet.NET].url
128 Bytes
13. Appendix FAQ Finale/[Tutorialsplanet.NET].url
128 Bytes
2. Return of the Multi-Armed Bandit/[Tutorialsplanet.NET].url
128 Bytes
5. Dynamic Programming/[Tutorialsplanet.NET].url
128 Bytes
8. Approximation Methods/[Tutorialsplanet.NET].url
128 Bytes
[Tutorialsplanet.NET].url
128 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>