搜索
[FreeCourseSite.com] Udemy - 2021 Python for Machine Learning & Data Science Masterclass
磁力链接/BT种子名称
[FreeCourseSite.com] Udemy - 2021 Python for Machine Learning & Data Science Masterclass
磁力链接/BT种子简介
种子哈希:
755ad0276149db0667bffc7b97f73ad3885d6afb
文件大小:
6.41G
已经下载:
731
次
下载速度:
极快
收录时间:
2021-03-09
最近下载:
2025-05-16
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:755AD0276149DB0667BFFC7B97F73AD3885D6AFB
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
inside
欧美臀
小念
沈大人
安防最新
ssis-875
雪中悍刀行
何佩瑜
妈妈巨乳
懂你
美杜莎
罗漫
谁催眠了我的表姐
越南 迷奸
性瘾
deep+inside:+angeli+khang
硬气
还债
厕屁
每日
道
迷 姨
邵氏
小學生
变态
画报
大神素人
trump
原版无水印
美男
文件列表
5. Pandas/28. Pandas Project Exercise Solutions.mp4
190.4 MB
8. Data Analysis and Visualization Capstone Project Exercise/4. Capstone Project Solutions - Part Three.mp4
150.9 MB
5. Pandas/26. Pandas Pivot Tables.mp4
135.0 MB
7. Seaborn Data Visualizations/2. Scatterplots with Seaborn.mp4
134.9 MB
6. Matplotlib/11. Matplotlib Exercise Questions - Solutions.mp4
129.1 MB
8. Data Analysis and Visualization Capstone Project Exercise/2. Capstone Project Solutions - Part One.mp4
122.6 MB
5. Pandas/4. DataFrames - Part One - Creating a DataFrame.mp4
119.6 MB
7. Seaborn Data Visualizations/8. Categorical Plots - Distributions within Categories - Coding with Seaborn.mp4
116.6 MB
8. Data Analysis and Visualization Capstone Project Exercise/3. Capstone Project Solutions - Part Two.mp4
116.4 MB
7. Seaborn Data Visualizations/14. Seaborn Plot Exercises Solutions.mp4
116.0 MB
4. NumPy/2. NumPy Arrays.mp4
115.0 MB
5. Pandas/23. Pandas Input and Output - HTML Tables.mp4
111.8 MB
5. Pandas/15. GroupBy Operations - Part Two - MultiIndex.mp4
111.0 MB
5. Pandas/25. Pandas Input and Output - SQL Databases.mp4
108.2 MB
5. Pandas/21. Pandas - Time Methods for Date and Time Data.mp4
106.9 MB
10. Linear Regression/24. L1 Regularization - Lasso Regression - Background and Implementation.mp4
104.9 MB
1. Introduction to Course/3. Anaconda Python and Jupyter Install and Setup.mp4
103.6 MB
5. Pandas/10. Pandas - Useful Methods - Apply on Multiple Columns.mp4
103.3 MB
5. Pandas/13. Missing Data - Pandas Operations.mp4
102.6 MB
5. Pandas/7. DataFrames - Part Four - Working with Rows.mp4
101.4 MB
10. Linear Regression/23. L2 Regularization - Ridge Regression - Python Implementation.mp4
101.1 MB
6. Matplotlib/6. Matplotlib - Subplots Functionality.mp4
100.9 MB
10. Linear Regression/25. L1 and L2 Regularization - Elastic Net.mp4
97.9 MB
8. Data Analysis and Visualization Capstone Project Exercise/1. Capstone Project Overview.mp4
97.7 MB
5. Pandas/14. GroupBy Operations - Part One.mp4
97.6 MB
10. Linear Regression/6. Python coding Simple Linear Regression.mp4
96.4 MB
7. Seaborn Data Visualizations/11. Seaborn Grid Plots.mp4
96.1 MB
5. Pandas/8. Pandas - Conditional Filtering.mp4
94.4 MB
5. Pandas/6. DataFrames - Part Three - Working with Columns.mp4
93.6 MB
10. Linear Regression/11. Linear Regression - Model Deployment and Coefficient Interpretation.mp4
92.5 MB
10. Linear Regression/3. Linear Regression - Understanding Ordinary Least Squares.mp4
90.4 MB
5. Pandas/11. Pandas - Useful Methods - Statistical Information and Sorting.mp4
89.8 MB
10. Linear Regression/8. Linear Regression - Scikit-Learn Train Test Split.mp4
87.0 MB
6. Matplotlib/8. Matplotlib Styling - Colors and Styles.mp4
85.1 MB
7. Seaborn Data Visualizations/4. Distribution Plots - Part Two - Coding with Seaborn.mp4
81.5 MB
5. Pandas/20. Pandas - Text Methods for String Data.mp4
79.4 MB
10. Linear Regression/9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.mp4
77.2 MB
5. Pandas/9. Pandas - Useful Methods - Apply on Single Column.mp4
76.6 MB
10. Linear Regression/16. Polynomial Regression - Choosing Degree of Polynomial.mp4
76.5 MB
9. Machine Learning Concepts Overview/4. Supervised Machine Learning Process.mp4
74.9 MB
7. Seaborn Data Visualizations/12. Seaborn - Matrix Plots.mp4
74.7 MB
7. Seaborn Data Visualizations/10. Seaborn - Comparison Plots - Coding with Seaborn.mp4
73.6 MB
10. Linear Regression/5. Linear Regression - Gradient Descent.mp4
68.2 MB
10. Linear Regression/20. Introduction to Cross Validation.mp4
65.6 MB
7. Seaborn Data Visualizations/7. Categorical Plots - Distributions within Categories - Understanding Plot Types.mp4
64.1 MB
10. Linear Regression/22. L2 Regularization - Ridge Regression Theory.mp4
64.1 MB
10. Linear Regression/10. Linear Regression - Residual Plots.mp4
62.4 MB
6. Matplotlib/4. Matplotlib - Implementing Figures and Axes.mp4
62.0 MB
7. Seaborn Data Visualizations/6. Categorical Plots - Statistics within Categories - Coding with Seaborn.mp4
57.7 MB
10. Linear Regression/2. Linear Regression - Algorithm History.mp4
57.4 MB
10. Linear Regression/19. Feature Scaling.mp4
56.6 MB
5. Pandas/5. DataFrames - Part Two - Basic Properties.mp4
56.5 MB
6. Matplotlib/2. Matplotlib Basics.mp4
56.2 MB
5. Pandas/17. Combining DataFrames - Inner Merge.mp4
56.2 MB
5. Pandas/12. Missing Data - Overview.mp4
55.8 MB
10. Linear Regression/13. Polynomial Regression - Creating Polynomial Features.mp4
55.2 MB
6. Matplotlib/10. Matplotlib Exercise Questions Overview.mp4
53.2 MB
5. Pandas/16. Combining DataFrames - Concatenation.mp4
53.0 MB
7. Seaborn Data Visualizations/13. Seaborn Plot Exercises Overview.mp4
52.3 MB
5. Pandas/22. Pandas Input and Output - CSV Files.mp4
52.3 MB
1. Introduction to Course/4. Environment Setup.mp4
51.7 MB
10. Linear Regression/14. Polynomial Regression - Training and Evaluation.mp4
51.2 MB
4. NumPy/5. NumPy Operations.mp4
50.9 MB
4. NumPy/7. Numpy Exercises - Solutions.mp4
50.9 MB
4. NumPy/4. NumPy Indexing and Selection.mp4
48.6 MB
10. Linear Regression/7. Overview of Scikit-Learn and Python.mp4
47.8 MB
5. Pandas/3. Series - Part Two.mp4
47.5 MB
9. Machine Learning Concepts Overview/2. Why Machine Learning.mp4
46.9 MB
10. Linear Regression/12. Polynomial Regression - Theory and Motivation.mp4
46.6 MB
10. Linear Regression/15. Bias Variance Trade-Off.mp4
45.1 MB
5. Pandas/27. Pandas Project Exercise Overview.mp4
43.1 MB
3. Machine Learning Pathway Overview/1. Machine Learning Pathway.mp4
42.5 MB
6. Matplotlib/9. Advanced Matplotlib Commands (Optional).mp4
42.4 MB
5. Pandas/19. Combining DataFrames - Outer Merge.mp4
41.8 MB
10. Linear Regression/26. Linear Regression Project - Data Overview.mp4
41.0 MB
9. Machine Learning Concepts Overview/3. Types of Machine Learning Algorithms.mp4
40.6 MB
5. Pandas/2. Series - Part One.mp4
40.3 MB
10. Linear Regression/4. Linear Regression - Cost Functions.mp4
37.8 MB
5. Pandas/24. Pandas Input and Output - Excel Files.mp4
36.3 MB
10. Linear Regression/21. Regularization Data Setup.mp4
36.1 MB
6. Matplotlib/7. Matplotlib Styling - Legends.mp4
35.8 MB
10. Linear Regression/18. Regularization Overview.mp4
35.0 MB
7. Seaborn Data Visualizations/3. Distribution Plots - Part One - Understanding Plot Types.mp4
33.6 MB
9. Machine Learning Concepts Overview/1. Introduction to Machine Learning Overview Section.mp4
31.2 MB
2. OPTIONAL Python Crash Course/2. Python Crash Course - Part One.mp4
31.0 MB
10. Linear Regression/17. Polynomial Regression - Model Deployment.mp4
30.3 MB
5. Pandas/18. Combining DataFrames - Left and Right Merge.mp4
29.3 MB
1. Introduction to Course/3.1 UNZIP_ME_FOR_NOTEBOOKS.zip
28.4 MB
1. Introduction to Course/2.1 UNZIP_ME_FOR_NOTEBOOKS.zip
28.4 MB
6. Matplotlib/3. Matplotlib - Understanding the Figure Object.mp4
27.1 MB
2. OPTIONAL Python Crash Course/6. Python Crash Course - Exercise Solutions.mp4
26.3 MB
1. Introduction to Course/2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.mp4
25.7 MB
6. Matplotlib/5. Matplotlib - Figure Parameters.mp4
24.9 MB
7. Seaborn Data Visualizations/9. Seaborn - Comparison Plots - Understanding the Plot Types.mp4
24.5 MB
2. OPTIONAL Python Crash Course/4. Python Crash Course - Part Three.mp4
24.3 MB
2. OPTIONAL Python Crash Course/3. Python Crash Course - Part Two.mp4
23.3 MB
7. Seaborn Data Visualizations/5. Categorical Plots - Statistics within Categories - Understanding Plot Types.mp4
22.9 MB
6. Matplotlib/1. Introduction to Matplotlib.mp4
22.6 MB
5. Pandas/1. Introduction to Pandas.mp4
22.0 MB
7. Seaborn Data Visualizations/1. Introduction to Seaborn.mp4
21.0 MB
9. Machine Learning Concepts Overview/5. Companion Book - Introduction to Statistical Learning.mp4
20.2 MB
4. NumPy/6. NumPy Exercises.mp4
12.1 MB
4. NumPy/1. Introduction to NumPy.mp4
11.8 MB
10. Linear Regression/1. Introduction to Linear Regression Section.mp4
9.3 MB
2. OPTIONAL Python Crash Course/5. Python Crash Course - Exercise Questions.mp4
5.2 MB
5. Pandas/28. Pandas Project Exercise Solutions.srt
39.7 kB
5. Pandas/26. Pandas Pivot Tables.srt
32.9 kB
4. NumPy/2. NumPy Arrays.srt
32.7 kB
5. Pandas/21. Pandas - Time Methods for Date and Time Data.srt
32.5 kB
8. Data Analysis and Visualization Capstone Project Exercise/4. Capstone Project Solutions - Part Three.srt
31.6 kB
7. Seaborn Data Visualizations/2. Scatterplots with Seaborn.srt
30.4 kB
5. Pandas/25. Pandas Input and Output - SQL Databases.srt
30.1 kB
5. Pandas/4. DataFrames - Part One - Creating a DataFrame.srt
29.7 kB
6. Matplotlib/6. Matplotlib - Subplots Functionality.srt
29.3 kB
7. Seaborn Data Visualizations/8. Categorical Plots - Distributions within Categories - Coding with Seaborn.srt
28.9 kB
10. Linear Regression/6. Python coding Simple Linear Regression.srt
28.8 kB
5. Pandas/13. Missing Data - Pandas Operations.srt
28.1 kB
5. Pandas/8. Pandas - Conditional Filtering.srt
27.8 kB
8. Data Analysis and Visualization Capstone Project Exercise/2. Capstone Project Solutions - Part One.srt
27.5 kB
10. Linear Regression/23. L2 Regularization - Ridge Regression - Python Implementation.srt
27.1 kB
5. Pandas/10. Pandas - Useful Methods - Apply on Multiple Columns.srt
26.6 kB
10. Linear Regression/25. L1 and L2 Regularization - Elastic Net.srt
26.3 kB
10. Linear Regression/11. Linear Regression - Model Deployment and Coefficient Interpretation.srt
26.2 kB
7. Seaborn Data Visualizations/4. Distribution Plots - Part Two - Coding with Seaborn.srt
25.4 kB
2. OPTIONAL Python Crash Course/2. Python Crash Course - Part One.srt
25.2 kB
6. Matplotlib/11. Matplotlib Exercise Questions - Solutions.srt
25.1 kB
5. Pandas/20. Pandas - Text Methods for String Data.srt
24.5 kB
10. Linear Regression/8. Linear Regression - Scikit-Learn Train Test Split.srt
24.3 kB
8. Data Analysis and Visualization Capstone Project Exercise/3. Capstone Project Solutions - Part Two.srt
24.0 kB
5. Pandas/11. Pandas - Useful Methods - Statistical Information and Sorting.srt
24.0 kB
10. Linear Regression/9. Linear Regression - Scikit-Learn Performance Evaluation - Regression.srt
23.4 kB
10. Linear Regression/3. Linear Regression - Understanding Ordinary Least Squares.srt
23.1 kB
10. Linear Regression/24. L1 Regularization - Lasso Regression - Background and Implementation.srt
23.0 kB
7. Seaborn Data Visualizations/14. Seaborn Plot Exercises Solutions.srt
22.9 kB
5. Pandas/23. Pandas Input and Output - HTML Tables.srt
22.9 kB
1. Introduction to Course/3. Anaconda Python and Jupyter Install and Setup.srt
22.1 kB
5. Pandas/14. GroupBy Operations - Part One.srt
21.9 kB
7. Seaborn Data Visualizations/12. Seaborn - Matrix Plots.srt
21.6 kB
5. Pandas/7. DataFrames - Part Four - Working with Rows.srt
21.6 kB
6. Matplotlib/8. Matplotlib Styling - Colors and Styles.srt
21.5 kB
6. Matplotlib/4. Matplotlib - Implementing Figures and Axes.srt
21.5 kB
5. Pandas/15. GroupBy Operations - Part Two - MultiIndex.srt
21.4 kB
10. Linear Regression/22. L2 Regularization - Ridge Regression Theory.srt
21.2 kB
5. Pandas/6. DataFrames - Part Three - Working with Columns.srt
21.1 kB
8. Data Analysis and Visualization Capstone Project Exercise/1. Capstone Project Overview.srt
21.1 kB
7. Seaborn Data Visualizations/11. Seaborn Grid Plots.srt
21.0 kB
5. Pandas/9. Pandas - Useful Methods - Apply on Single Column.srt
20.7 kB
10. Linear Regression/10. Linear Regression - Residual Plots.srt
20.7 kB
7. Seaborn Data Visualizations/7. Categorical Plots - Distributions within Categories - Understanding Plot Types.srt
20.6 kB
10. Linear Regression/16. Polynomial Regression - Choosing Degree of Polynomial.srt
20.4 kB
10. Linear Regression/20. Introduction to Cross Validation.srt
20.3 kB
9. Machine Learning Concepts Overview/4. Supervised Machine Learning Process.srt
20.2 kB
6. Matplotlib/2. Matplotlib Basics.srt
20.1 kB
5. Pandas/17. Combining DataFrames - Inner Merge.srt
19.0 kB
5. Pandas/12. Missing Data - Overview.srt
18.8 kB
2. OPTIONAL Python Crash Course/3. Python Crash Course - Part Two.srt
18.5 kB
10. Linear Regression/5. Linear Regression - Gradient Descent.srt
17.1 kB
5. Pandas/22. Pandas Input and Output - CSV Files.srt
17.0 kB
2. OPTIONAL Python Crash Course/4. Python Crash Course - Part Three.srt
17.0 kB
10. Linear Regression/13. Polynomial Regression - Creating Polynomial Features.srt
16.8 kB
4. NumPy/4. NumPy Indexing and Selection.srt
16.6 kB
10. Linear Regression/15. Bias Variance Trade-Off.srt
16.3 kB
3. Machine Learning Pathway Overview/1. Machine Learning Pathway.srt
16.2 kB
7. Seaborn Data Visualizations/10. Seaborn - Comparison Plots - Coding with Seaborn.srt
16.1 kB
5. Pandas/3. Series - Part Two.srt
15.7 kB
5. Pandas/16. Combining DataFrames - Concatenation.srt
15.4 kB
7. Seaborn Data Visualizations/3. Distribution Plots - Part One - Understanding Plot Types.srt
15.4 kB
10. Linear Regression/19. Feature Scaling.srt
15.2 kB
9. Machine Learning Concepts Overview/2. Why Machine Learning.srt
15.0 kB
7. Seaborn Data Visualizations/6. Categorical Plots - Statistics within Categories - Coding with Seaborn.srt
15.0 kB
5. Pandas/19. Combining DataFrames - Outer Merge.srt
14.9 kB
1. Introduction to Course/4. Environment Setup.srt
14.8 kB
10. Linear Regression/14. Polynomial Regression - Training and Evaluation.srt
14.5 kB
2. OPTIONAL Python Crash Course/6. Python Crash Course - Exercise Solutions.srt
13.8 kB
5. Pandas/2. Series - Part One.srt
13.7 kB
5. Pandas/5. DataFrames - Part Two - Basic Properties.srt
13.6 kB
10. Linear Regression/2. Linear Regression - Algorithm History.srt
13.4 kB
10. Linear Regression/21. Regularization Data Setup.srt
12.7 kB
10. Linear Regression/7. Overview of Scikit-Learn and Python.srt
12.6 kB
4. NumPy/5. NumPy Operations.srt
12.3 kB
9. Machine Learning Concepts Overview/3. Types of Machine Learning Algorithms.srt
11.9 kB
6. Matplotlib/3. Matplotlib - Understanding the Figure Object.srt
11.8 kB
10. Linear Regression/4. Linear Regression - Cost Functions.srt
11.7 kB
7. Seaborn Data Visualizations/13. Seaborn Plot Exercises Overview.srt
11.5 kB
10. Linear Regression/12. Polynomial Regression - Theory and Motivation.srt
11.5 kB
5. Pandas/24. Pandas Input and Output - Excel Files.srt
11.1 kB
4. NumPy/7. Numpy Exercises - Solutions.srt
11.1 kB
6. Matplotlib/7. Matplotlib Styling - Legends.srt
10.6 kB
10. Linear Regression/18. Regularization Overview.srt
10.6 kB
5. Pandas/27. Pandas Project Exercise Overview.srt
9.8 kB
6. Matplotlib/10. Matplotlib Exercise Questions Overview.srt
9.6 kB
5. Pandas/18. Combining DataFrames - Left and Right Merge.srt
9.3 kB
7. Seaborn Data Visualizations/5. Categorical Plots - Statistics within Categories - Understanding Plot Types.srt
9.0 kB
7. Seaborn Data Visualizations/9. Seaborn - Comparison Plots - Understanding the Plot Types.srt
8.9 kB
9. Machine Learning Concepts Overview/1. Introduction to Machine Learning Overview Section.srt
8.8 kB
10. Linear Regression/17. Polynomial Regression - Model Deployment.srt
8.6 kB
10. Linear Regression/26. Linear Regression Project - Data Overview.srt
7.9 kB
6. Matplotlib/5. Matplotlib - Figure Parameters.srt
7.8 kB
5. Pandas/1. Introduction to Pandas.srt
7.4 kB
1. Introduction to Course/2. COURSE OVERVIEW LECTURE - PLEASE DO NOT SKIP!.srt
7.3 kB
6. Matplotlib/1. Introduction to Matplotlib.srt
6.9 kB
7. Seaborn Data Visualizations/1. Introduction to Seaborn.srt
6.7 kB
6. Matplotlib/9. Advanced Matplotlib Commands (Optional).srt
6.6 kB
9. Machine Learning Concepts Overview/5. Companion Book - Introduction to Statistical Learning.srt
4.8 kB
4. NumPy/1. Introduction to NumPy.srt
3.1 kB
10. Linear Regression/1. Introduction to Linear Regression Section.srt
2.7 kB
2. OPTIONAL Python Crash Course/5. Python Crash Course - Exercise Questions.srt
2.6 kB
4. NumPy/6. NumPy Exercises.srt
2.1 kB
1. Introduction to Course/1. EARLY BIRD INFO.html
550 Bytes
2. OPTIONAL Python Crash Course/1. OPTIONAL Python Crash Course.html
472 Bytes
1. Introduction to Course/4.2 requirements.txt
221 Bytes
4. NumPy/3. Coding Exercise Check-in Creating NumPy Arrays.html
163 Bytes
1. Introduction to Course/4.1 Backup Google Link for requirements.txt file.html
143 Bytes
[FreeCourseSite.com].url
127 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>