搜索
Udemy - Machine Learning & Deep Learning in Python & R (11.2021)
磁力链接/BT种子名称
Udemy - Machine Learning & Deep Learning in Python & R (11.2021)
磁力链接/BT种子简介
种子哈希:
66b5be3fa5c6183c4d6d3130d2db5c56c6dd88e1
文件大小:
12.54G
已经下载:
94
次
下载速度:
极快
收录时间:
2025-05-22
最近下载:
2025-06-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:66B5BE3FA5C6183C4D6D3130D2DB5C56C6DD88E1
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
颜值不错的爆乳
阿日
挿入
新下海
萌感系列
苏菲
dms765
海克斯
葵つかさ
膜破
【极品震撼❤️史上最强迷操三人组】最强三性魔轮番迷操杭州富家女
西瓜
年轻性感的妈妈
灵性
deep
办公室少妇
寝取ntr
在国外
abp-668
白气球
蕾丝短裙
miab-399c
亞美
斯巴达第三季
成人社區素人投稿自拍快要生產的變態大肚子漂亮孕婦援交土豪小穴還
付费jk
汤先生的
塚本
원정녀32
草台
文件列表
27 - ANN in R/008 Saving - Restoring Models and Using Callbacks.mp4
226.5 MB
37 - Time Series - Preprocessing in Python/003 Time Series - Visualization in Python.mp4
173.2 MB
18 - Ensemble technique 3 - Boosting/007 XGBoosting in R.mp4
169.1 MB
26 - ANN in Python/009 Building Neural Network for Regression Problem.mp4
163.5 MB
26 - ANN in Python/011 Saving - Restoring Models and Using Callbacks.mp4
158.9 MB
23 - Creating Support Vector Machine Model in R/004 Classification SVM model using Linear Kernel.mp4
145.9 MB
27 - ANN in R/006 Building Regression Model with Functional API.mp4
137.5 MB
27 - ANN in R/003 Building,Compiling and Training.mp4
137.1 MB
34 - Transfer Learning _ Basics/006 Project - Transfer Learning - VGG16.mp4
135.4 MB
07 - Linear Regression/020 Ridge regression and Lasso in Python.mp4
135.1 MB
25 - Neural Networks - Stacking cells to create network/003 Back Propagation.mp4
128.1 MB
38 - Time Series - Important Concepts/005 Differencing in Python.mp4
118.5 MB
37 - Time Series - Preprocessing in Python/005 Time Series - Feature Engineering in Python.mp4
118.2 MB
27 - ANN in R/002 Data Normalization and Test-Train Split.mp4
117.2 MB
05 - Introduction to Machine Learning/001 Introduction to Machine Learning.mp4
114.5 MB
37 - Time Series - Preprocessing in Python/001 Data Loading in Python.mp4
114.1 MB
23 - Creating Support Vector Machine Model in R/008 SVM based Regression Model in R.mp4
111.3 MB
07 - Linear Regression/021 Ridge regression and Lasso in R.mp4
108.5 MB
14 - Simple Decision Trees/013 Building a Regression Tree in R.mp4
108.3 MB
35 - Transfer Learning in R/001 Project - Transfer Learning - VGG16 (Implementation).mp4
106.5 MB
37 - Time Series - Preprocessing in Python/007 Time Series - Upsampling and Downsampling in Python.mp4
105.6 MB
06 - Data Preprocessing/016 Bi-variate analysis and Variable transformation.mp4
105.3 MB
27 - ANN in R/004 Evaluating and Predicting.mp4
104.1 MB
06 - Data Preprocessing/008 EDD in R.mp4
101.7 MB
03 - Setting up R Studio and R crash course/007 Creating Barplots in R.mp4
101.4 MB
07 - Linear Regression/003 Assessing accuracy of predicted coefficients.mp4
96.6 MB
26 - ANN in Python/010 Using Functional API for complex architectures.mp4
96.6 MB
18 - Ensemble technique 3 - Boosting/005 AdaBoosting in R.mp4
93.0 MB
32 - Project _ Creating CNN model from scratch/001 Project in R - Data Preprocessing.mp4
92.0 MB
24 - Introduction - Deep Learning/004 Python - Creating Perceptron model.mp4
90.8 MB
15 - Simple Classification Tree/005 Building a classification Tree in R.mp4
89.2 MB
27 - ANN in R/005 ANN with NeuralNets Package.mp4
88.5 MB
23 - Creating Support Vector Machine Model in R/006 Polynomial Kernel with Hyperparameter Tuning.mp4
87.2 MB
06 - Data Preprocessing/025 Correlation Matrix in R.mp4
87.2 MB
03 - Setting up R Studio and R crash course/003 Packages in R.mp4
87.0 MB
15 - Simple Classification Tree/004 Classification tree in Python _ Training.mp4
86.7 MB
14 - Simple Decision Trees/018 Pruning a Tree in R.mp4
86.1 MB
26 - ANN in Python/007 Compiling and Training the Neural Network model.mp4
85.6 MB
17 - Ensemble technique 2 - Random Forests/003 Using Grid Search in Python.mp4
84.6 MB
27 - ANN in R/007 Complex Architectures using Functional API.mp4
83.4 MB
26 - ANN in Python/006 Building the Neural Network using Keras.mp4
83.0 MB
07 - Linear Regression/017 Subset selection techniques.mp4
82.9 MB
08 - Classification Models_ Data Preparation/001 The Data and the Data Dictionary.mp4
82.8 MB
08 - Classification Models_ Data Preparation/004 EDD in Python.mp4
81.4 MB
16 - Ensemble technique 1 - Bagging/002 Ensemble technique 1 - Bagging in Python.mp4
81.1 MB
07 - Linear Regression/015 Test-Train Split in R.mp4
79.3 MB
12 - K-Nearest Neighbors classifier/004 K-Nearest Neighbors classifier.mp4
79.1 MB
18 - Ensemble technique 3 - Boosting/006 Ensemble technique 3c - XGBoost in Python.mp4
78.6 MB
40 - Time Series - ARIMA model/003 ARIMA model in Python.mp4
78.0 MB
11 - Linear Discriminant Analysis (LDA)/003 Linear Discriminant Analysis in R.mp4
78.0 MB
12 - K-Nearest Neighbors classifier/003 Test-Train Split in R.mp4
77.8 MB
14 - Simple Decision Trees/017 Pruning a tree in Python.mp4
77.1 MB
31 - Project _ Creating CNN model from scratch in Python/003 Project - Data Preprocessing in Python.mp4
75.3 MB
30 - Creating CNN model in R/003 Creating Model Architecture.mp4
75.1 MB
06 - Data Preprocessing/023 Correlation Analysis.mp4
75.1 MB
06 - Data Preprocessing/010 Outlier Treatment in Python.mp4
73.7 MB
26 - ANN in Python/008 Evaluating performance and Predicting using Keras.mp4
73.3 MB
07 - Linear Regression/010 Multiple Linear Regression in Python.mp4
73.1 MB
06 - Data Preprocessing/003 The Dataset and the Data Dictionary.mp4
72.6 MB
18 - Ensemble technique 3 - Boosting/003 Gradient Boosting in R.mp4
72.4 MB
30 - Creating CNN model in R/005 Model Performance.mp4
71.4 MB
28 - CNN - Basics/005 Channels.mp4
71.1 MB
22 - Creating Support Vector Machine Model in Python/007 SVM based Regression Model in Python.mp4
70.9 MB
30 - Creating CNN model in R/002 Data Preprocessing.mp4
70.3 MB
08 - Classification Models_ Data Preparation/005 EDD in R.mp4
69.7 MB
41 - Time Series - SARIMA model/002 SARIMA model in Python.mp4
69.4 MB
31 - Project _ Creating CNN model from scratch in Python/004 Project - Training CNN model in Python.mp4
69.2 MB
04 - Basics of Statistics/003 Describing data Graphically.mp4
68.6 MB
02 - Setting up Python and Jupyter Notebook/003 Opening Jupyter Notebook.mp4
68.4 MB
12 - K-Nearest Neighbors classifier/007 K-Nearest Neighbors in R.mp4
68.0 MB
02 - Setting up Python and Jupyter Notebook/006 Strings in Python_ Python Basics.mp4
67.6 MB
22 - Creating Support Vector Machine Model in Python/011 SVM Based classification model.mp4
67.2 MB
37 - Time Series - Preprocessing in Python/002 Time Series - Visualization Basics.mp4
66.8 MB
07 - Linear Regression/018 Subset selection in R.mp4
66.6 MB
07 - Linear Regression/005 Simple Linear Regression in Python.mp4
66.5 MB
36 - Time Series Analysis and Forecasting/005 Time Series - Basic Notations.mp4
65.5 MB
07 - Linear Regression/011 Multiple Linear Regression in R.mp4
65.4 MB
25 - Neural Networks - Stacking cells to create network/004 Some Important Concepts.mp4
65.2 MB
06 - Data Preprocessing/007 EDD in Python.mp4
64.8 MB
26 - ANN in Python/012 Hyperparameter Tuning.mp4
63.6 MB
23 - Creating Support Vector Machine Model in R/005 Hyperparameter Tuning for Linear Kernel.mp4
63.4 MB
25 - Neural Networks - Stacking cells to create network/002 Gradient Descent.mp4
63.3 MB
02 - Setting up Python and Jupyter Notebook/007 Lists, Tuples and Directories_ Python Basics.mp4
63.2 MB
03 - Setting up R Studio and R crash course/006 Inputting data part 3_ Importing from CSV or Text files.mp4
63.0 MB
38 - Time Series - Important Concepts/003 Decomposing Time Series in Python.mp4
62.7 MB
37 - Time Series - Preprocessing in Python/004 Time Series - Feature Engineering Basics.mp4
62.4 MB
16 - Ensemble technique 1 - Bagging/003 Bagging in R.mp4
61.8 MB
29 - Creating CNN model in Python/004 Comparison - Pooling vs Without Pooling in Python.mp4
60.8 MB
22 - Creating Support Vector Machine Model in Python/012 Hyper Parameter Tuning.mp4
60.5 MB
39 - Time Series - Implementation in Python/001 Test Train Split in Python.mp4
60.2 MB
23 - Creating Support Vector Machine Model in R/007 Radial Kernel with Hyperparameter Tuning.mp4
59.4 MB
39 - Time Series - Implementation in Python/007 Moving Average model in Python.mp4
59.4 MB
32 - Project _ Creating CNN model from scratch/005 Project in R - Data Augmentation.mp4
59.1 MB
26 - ANN in Python/003 Dataset for classification.mp4
58.9 MB
20 - Support Vector Classifier/001 Support Vector classifiers.mp4
58.9 MB
07 - Linear Regression/008 The F - statistic.mp4
58.7 MB
10 - Logistic Regression/012 Predicting probabilities, assigning classes and making Confusion Matrix in R.mp4
58.4 MB
06 - Data Preprocessing/018 Variable transformation in R.mp4
58.1 MB
06 - Data Preprocessing/024 Correlation Analysis in Python.mp4
58.0 MB
29 - Creating CNN model in Python/003 CNN model in Python - Training and results.mp4
57.8 MB
23 - Creating Support Vector Machine Model in R/001 Importing Data into R.mp4
56.3 MB
39 - Time Series - Implementation in Python/004 Auto Regression Model creation in Python.mp4
56.1 MB
33 - Project _ Data Augmentation for avoiding overfitting/002 Project - Data Augmentation Training and Results.mp4
55.6 MB
28 - CNN - Basics/004 Filters and Feature maps.mp4
55.3 MB
10 - Logistic Regression/009 Creating Confusion Matrix in Python.mp4
53.7 MB
28 - CNN - Basics/001 CNN Introduction.mp4
53.6 MB
39 - Time Series - Implementation in Python/005 Auto Regression with Walk Forward validation in Python.mp4
52.0 MB
31 - Project _ Creating CNN model from scratch in Python/001 Project - Introduction.mp4
51.8 MB
10 - Logistic Regression/002 Training a Simple Logistic Model in Python.mp4
50.2 MB
08 - Classification Models_ Data Preparation/006 Outlier treatment in Python.mp4
49.6 MB
02 - Setting up Python and Jupyter Notebook/009 Working with Pandas Library of Python.mp4
49.2 MB
28 - CNN - Basics/006 PoolingLayer.mp4
49.1 MB
17 - Ensemble technique 2 - Random Forests/002 Ensemble technique 2 - Random Forests in Python.mp4
49.0 MB
32 - Project _ Creating CNN model from scratch/002 CNN Project in R - Structure and Compile.mp4
48.3 MB
15 - Simple Classification Tree/003 Classification tree in Python _ Preprocessing.mp4
47.6 MB
22 - Creating Support Vector Machine Model in Python/009 Classification model - Preprocessing.mp4
47.6 MB
25 - Neural Networks - Stacking cells to create network/005 Hyperparameter.mp4
47.6 MB
07 - Linear Regression/014 Test train split in Python.mp4
47.1 MB
24 - Introduction - Deep Learning/002 Perceptron.mp4
46.9 MB
30 - Creating CNN model in R/006 Comparison - Pooling vs Without Pooling in R.mp4
46.8 MB
08 - Classification Models_ Data Preparation/013 Dummy variable creation in R.mp4
46.5 MB
26 - ANN in Python/004 Normalization and Test-Train split.mp4
46.3 MB
06 - Data Preprocessing/017 Variable transformation and deletion in Python.mp4
46.3 MB
06 - Data Preprocessing/022 Dummy variable creation in R.mp4
46.1 MB
14 - Simple Decision Trees/011 Splitting Data into Test and Train Set in R.mp4
46.1 MB
02 - Setting up Python and Jupyter Notebook/008 Working with Numpy Library of Python.mp4
46.0 MB
14 - Simple Decision Trees/002 Understanding a Regression Tree.mp4
45.8 MB
14 - Simple Decision Trees/006 Importing the Data set into R.mp4
45.8 MB
07 - Linear Regression/004 Assessing Model Accuracy_ RSE and R squared.mp4
45.7 MB
07 - Linear Regression/002 Basic Equations and Ordinary Least Squares (OLS) method.mp4
45.5 MB
39 - Time Series - Implementation in Python/002 Naive (Persistence) model in Python.mp4
45.5 MB
29 - Creating CNN model in Python/002 CNN model in Python - structure and Compile.mp4
45.3 MB
14 - Simple Decision Trees/001 Basics of Decision Trees.mp4
44.7 MB
12 - K-Nearest Neighbors classifier/006 K-Nearest Neighbors in Python_ Part 2.mp4
44.4 MB
03 - Setting up R Studio and R crash course/008 Creating Histograms in R.mp4
44.1 MB
07 - Linear Regression/012 Test-train split.mp4
43.9 MB
13 - Comparing results from 3 models/001 Understanding the results of classification models.mp4
43.7 MB
40 - Time Series - ARIMA model/001 ACF and PACF.mp4
43.2 MB
11 - Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis.mp4
42.9 MB
02 - Setting up Python and Jupyter Notebook/004 Introduction to Jupyter.mp4
42.9 MB
07 - Linear Regression/006 Simple Linear Regression in R.mp4
42.8 MB
03 - Setting up R Studio and R crash course/004 Inputting data part 1_ Inbuilt datasets of R.mp4
42.7 MB
02 - Setting up Python and Jupyter Notebook/010 Working with Seaborn Library of Python.mp4
42.3 MB
18 - Ensemble technique 3 - Boosting/002 Ensemble technique 3a - Boosting in Python.mp4
41.8 MB
12 - K-Nearest Neighbors classifier/001 Test-Train Split.mp4
41.2 MB
41 - Time Series - SARIMA model/001 SARIMA model.mp4
40.9 MB
03 - Setting up R Studio and R crash course/002 Basics of R and R studio.mp4
40.7 MB
37 - Time Series - Preprocessing in Python/009 Moving Average.mp4
40.6 MB
04 - Basics of Statistics/004 Measures of Centers.mp4
40.4 MB
22 - Creating Support Vector Machine Model in Python/006 Standardizing the data.mp4
40.3 MB
08 - Classification Models_ Data Preparation/011 Variable transformation in R.mp4
39.9 MB
14 - Simple Decision Trees/004 The Data set for this part.mp4
39.1 MB
12 - K-Nearest Neighbors classifier/005 K-Nearest Neighbors in Python_ Part 1.mp4
39.0 MB
22 - Creating Support Vector Machine Model in Python/014 Radial Kernel with Hyperparameter Tuning.mp4
39.0 MB
22 - Creating Support Vector Machine Model in Python/002 The Data set for the Regression problem.mp4
39.0 MB
06 - Data Preprocessing/020 Dummy variable creation_ Handling qualitative data.mp4
38.6 MB
03 - Setting up R Studio and R crash course/001 Installing R and R studio.mp4
37.4 MB
10 - Logistic Regression/010 Evaluating performance of model.mp4
36.9 MB
24 - Introduction - Deep Learning/003 Activation Functions.mp4
36.3 MB
36 - Time Series Analysis and Forecasting/004 Forecasting model creation - Steps 1 (Goal).mp4
36.2 MB
07 - Linear Regression/007 Multiple Linear Regression.mp4
36.0 MB
07 - Linear Regression/019 Shrinkage methods_ Ridge and Lasso.mp4
35.0 MB
10 - Logistic Regression/001 Logistic Regression.mp4
34.5 MB
38 - Time Series - Important Concepts/004 Differencing.mp4
33.9 MB
30 - Creating CNN model in R/004 Compiling and training.mp4
33.8 MB
40 - Time Series - ARIMA model/004 ARIMA model with Walk Forward Validation in Python.mp4
33.7 MB
28 - CNN - Basics/003 Padding.mp4
33.2 MB
06 - Data Preprocessing/011 Outlier Treatment in R.mp4
32.2 MB
17 - Ensemble technique 2 - Random Forests/004 Random Forest in R.mp4
32.2 MB
18 - Ensemble technique 3 - Boosting/001 Boosting.mp4
32.1 MB
34 - Transfer Learning _ Basics/005 Transfer Learning.mp4
31.4 MB
19 - Maximum Margin Classifier/002 The Concept of a Hyperplane.mp4
30.8 MB
08 - Classification Models_ Data Preparation/010 Variable transformation and Deletion in Python.mp4
30.7 MB
15 - Simple Classification Tree/001 Classification tree.mp4
29.6 MB
06 - Data Preprocessing/004 Importing Data in Python.mp4
29.2 MB
10 - Logistic Regression/004 Result of Simple Logistic Regression.mp4
28.2 MB
06 - Data Preprocessing/021 Dummy variable creation in Python.mp4
27.8 MB
08 - Classification Models_ Data Preparation/012 Dummy variable creation in Python.mp4
27.6 MB
10 - Logistic Regression/006 Training multiple predictor Logistic model in Python.mp4
27.5 MB
06 - Data Preprocessing/014 Missing Value imputation in R.mp4
27.3 MB
36 - Time Series Analysis and Forecasting/002 Time Series Forecasting - Use cases.mp4
27.2 MB
14 - Simple Decision Trees/005 Importing the Data set into Python.mp4
27.1 MB
22 - Creating Support Vector Machine Model in Python/003 Importing data for regression model.mp4
27.1 MB
10 - Logistic Regression/003 Training a Simple Logistic model in R.mp4
26.8 MB
08 - Classification Models_ Data Preparation/007 Outlier Treatment in R.mp4
26.6 MB
07 - Linear Regression/013 Bias Variance trade-off.mp4
26.3 MB
06 - Data Preprocessing/012 Missing Value Imputation.mp4
26.2 MB
14 - Simple Decision Trees/008 Dummy Variable creation in Python.mp4
26.2 MB
14 - Simple Decision Trees/010 Test-Train split in Python.mp4
26.1 MB
22 - Creating Support Vector Machine Model in Python/005 Test-Train Split.mp4
26.1 MB
32 - Project _ Creating CNN model from scratch/003 Project in R - Training.mp4
25.8 MB
06 - Data Preprocessing/009 Outlier Treatment.mp4
25.7 MB
06 - Data Preprocessing/006 Univariate analysis and EDD.mp4
25.4 MB
39 - Time Series - Implementation in Python/006 Moving Average model -Basics.mp4
25.3 MB
32 - Project _ Creating CNN model from scratch/006 Project in R - Validation Performance.mp4
24.8 MB
06 - Data Preprocessing/013 Missing Value Imputation in Python.mp4
24.6 MB
22 - Creating Support Vector Machine Model in Python/013 Polynomial Kernel with Hyperparameter Tuning.mp4
24.0 MB
04 - Basics of Statistics/005 Measures of Dispersion.mp4
24.0 MB
08 - Classification Models_ Data Preparation/008 Missing Value Imputation in Python.mp4
23.7 MB
07 - Linear Regression/009 Interpreting results of Categorical variables.mp4
23.6 MB
19 - Maximum Margin Classifier/003 Maximum Margin Classifier.mp4
23.6 MB
08 - Classification Models_ Data Preparation/002 Data Import in Python.mp4
23.1 MB
04 - Basics of Statistics/001 Types of Data.mp4
22.8 MB
14 - Simple Decision Trees/015 Plotting decision tree in Python.mp4
22.5 MB
34 - Transfer Learning _ Basics/004 GoogLeNet.mp4
22.4 MB
38 - Time Series - Important Concepts/002 Random Walk.mp4
22.2 MB
10 - Logistic Regression/008 Confusion Matrix.mp4
22.1 MB
34 - Transfer Learning _ Basics/001 ILSVRC.mp4
21.9 MB
02 - Setting up Python and Jupyter Notebook/002 This is a milestone_.mp4
21.7 MB
09 - The Three classification models/001 Three Classifiers and the problem statement.mp4
21.3 MB
06 - Data Preprocessing/019 Non-usable variables.mp4
21.2 MB
06 - Data Preprocessing/002 Data Exploration.mp4
21.1 MB
26 - ANN in Python/002 Installing Tensorflow and Keras.mp4
21.0 MB
08 - Classification Models_ Data Preparation/009 Missing Value imputation in R.mp4
20.0 MB
15 - Simple Classification Tree/002 The Data set for Classification problem.mp4
19.5 MB
22 - Creating Support Vector Machine Model in Python/008 The Data set for the Classification problem.mp4
19.4 MB
14 - Simple Decision Trees/016 Pruning a tree.mp4
19.4 MB
14 - Simple Decision Trees/007 Missing value treatment in Python.mp4
18.8 MB
14 - Simple Decision Trees/012 Creating Decision tree in Python.mp4
18.7 MB
06 - Data Preprocessing/015 Seasonality in Data.mp4
17.8 MB
37 - Time Series - Preprocessing in Python/006 Time Series - Upsampling and Downsampling.mp4
17.8 MB
07 - Linear Regression/016 Regression models other than OLS.mp4
17.3 MB
14 - Simple Decision Trees/014 Evaluating model performance in Python.mp4
17.2 MB
02 - Setting up Python and Jupyter Notebook/001 Installing Python and Anaconda.mp4
17.1 MB
10 - Logistic Regression/007 Training multiple predictor Logistic model in R.mp4
16.5 MB
22 - Creating Support Vector Machine Model in Python/004 X-y Split.mp4
15.9 MB
14 - Simple Decision Trees/009 Dependent- Independent Data split in Python.mp4
15.9 MB
26 - ANN in Python/001 Keras and Tensorflow.mp4
15.6 MB
37 - Time Series - Preprocessing in Python/008 Time Series - Power Transformation.mp4
15.6 MB
35 - Transfer Learning in R/002 Project - Transfer Learning - VGG16 (Performance).mp4
15.3 MB
06 - Data Preprocessing/001 Gathering Business Knowledge.mp4
15.2 MB
07 - Linear Regression/022 Heteroscedasticity.mp4
15.2 MB
25 - Neural Networks - Stacking cells to create network/001 Basic Terminologies.mp4
15.1 MB
05 - Introduction to Machine Learning/002 Building a Machine Learning Model.mp4
13.2 MB
36 - Time Series Analysis and Forecasting/001 Introduction.mp4
12.9 MB
29 - Creating CNN model in Python/001 CNN model in Python - Preprocessing.mp4
12.5 MB
33 - Project _ Data Augmentation for avoiding overfitting/001 Project - Data Augmentation Preprocessing.mp4
12.4 MB
23 - Creating Support Vector Machine Model in R/002 Test-Train Split.mp4
11.3 MB
21 - Support Vector Machines/001 Kernel Based Support Vector Machines.mp4
11.3 MB
19 - Maximum Margin Classifier/004 Limitations of Maximum Margin Classifier.mp4
11.1 MB
12 - K-Nearest Neighbors classifier/002 Test-Train Split in Python.mp4
11.0 MB
34 - Transfer Learning _ Basics/003 VGG16NET.mp4
10.9 MB
16 - Ensemble technique 1 - Bagging/001 Ensemble technique 1 - Bagging.mp4
10.2 MB
22 - Creating Support Vector Machine Model in Python/010 Classification model - Standardizing the data.mp4
10.2 MB
18 - Ensemble technique 3 - Boosting/004 Ensemble technique 3b - AdaBoost in Python.mp4
9.9 MB
10 - Logistic Regression/011 Evaluating model performance in Python.mp4
9.4 MB
24 - Introduction - Deep Learning/001 Introduction to Neural Networks and Course flow.mp4
7.9 MB
01 - Introduction/001 Introduction.mp4
7.9 MB
40 - Time Series - ARIMA model/002 ARIMA model - Basics.mp4
6.9 MB
13 - Comparing results from 3 models/002 Summary of the three models.mp4
6.8 MB
09 - The Three classification models/002 Why can't we use Linear Regression_.mp4
6.5 MB
02 - Setting up Python and Jupyter Notebook/005 Arithmetic operators in Python_ Python Basics.mp4
6.1 MB
03 - Setting up R Studio and R crash course/005 Inputting data part 2_ Manual data entry.mp4
6.1 MB
17 - Ensemble technique 2 - Random Forests/001 Ensemble technique 2 - Random Forests.mp4
6.0 MB
31 - Project _ Creating CNN model from scratch in Python/005 Project in Python - model results.mp4
6.0 MB
27 - ANN in R/001 Installing Keras and Tensorflow.mp4
5.6 MB
39 - Time Series - Implementation in Python/003 Auto Regression Model - Basics.mp4
5.3 MB
32 - Project _ Creating CNN model from scratch/004 Project in R - Model Performance.mp4
5.3 MB
28 - CNN - Basics/002 Stride.mp4
4.9 MB
08 - Classification Models_ Data Preparation/003 Importing the dataset into R.mp4
4.8 MB
14 - Simple Decision Trees/003 The stopping criteria for controlling tree growth.mp4
4.8 MB
06 - Data Preprocessing/005 Importing the dataset into R.mp4
4.7 MB
11 - Linear Discriminant Analysis (LDA)/002 LDA in Python.mp4
4.2 MB
04 - Basics of Statistics/002 Types of Statistics.mp4
3.9 MB
36 - Time Series Analysis and Forecasting/003 Forecasting model creation - Steps.mp4
3.8 MB
38 - Time Series - Important Concepts/001 White Noise.mp4
3.7 MB
42 - Bonus Section/001 The final milestone_.mp4
3.5 MB
26 - ANN in Python/005 Different ways to create ANN using Keras.mp4
3.4 MB
10 - Logistic Regression/005 Logistic with multiple predictors.mp4
3.4 MB
37 - Time Series - Preprocessing in Python/010 Exponential Smoothing.mp4
3.0 MB
30 - Creating CNN model in R/001 CNN on MNIST Fashion Dataset - Model Architecture.mp4
3.0 MB
20 - Support Vector Classifier/002 Limitations of Support Vector Classifiers.mp4
2.7 MB
07 - Linear Regression/001 The Problem Statement.mp4
2.6 MB
19 - Maximum Margin Classifier/001 Content flow.mp4
2.5 MB
15 - Simple Classification Tree/006 Advantages and Disadvantages of Decision Trees.mp4
2.3 MB
41 - Time Series - SARIMA model/003 Stationary time Series.mp4
2.3 MB
34 - Transfer Learning _ Basics/002 LeNET.mp4
2.2 MB
22 - Creating Support Vector Machine Model in Python/001 Regression and Classification Models.mp4
1.3 MB
37 - Time Series - Preprocessing in Python/003 Time Series - Visualization in Python_Downloadly.ir_en.srt
29.6 kB
25 - Neural Networks - Stacking cells to create network/003 Back Propagation_Downloadly.ir_en.srt
25.4 kB
26 - ANN in Python/009 Building Neural Network for Regression Problem_Downloadly.ir_en.srt
24.3 kB
27 - ANN in R/008 Saving - Restoring Models and Using Callbacks_Downloadly.ir_en.srt
21.9 kB
07 - Linear Regression/020 Ridge regression and Lasso in Python_Downloadly.ir_en.srt
21.4 kB
26 - ANN in Python/011 Saving - Restoring Models and Using Callbacks_Downloadly.ir_en.srt
21.3 kB
34 - Transfer Learning _ Basics/006 Project - Transfer Learning - VGG16_Downloadly.ir_en.srt
20.9 kB
02 - Setting up Python and Jupyter Notebook/007 Lists, Tuples and Directories_ Python Basics_Downloadly.ir_en.srt
20.6 kB
05 - Introduction to Machine Learning/001 Introduction to Machine Learning_Downloadly.ir_en.srt
20.2 kB
06 - Data Preprocessing/016 Bi-variate analysis and Variable transformation_Downloadly.ir_en.srt
19.8 kB
37 - Time Series - Preprocessing in Python/005 Time Series - Feature Engineering in Python_Downloadly.ir_en.srt
19.7 kB
18 - Ensemble technique 3 - Boosting/007 XGBoosting in R_Downloadly.ir_en.srt
18.9 kB
02 - Setting up Python and Jupyter Notebook/006 Strings in Python_ Python Basics_Downloadly.ir_en.srt
18.4 kB
08 - Classification Models_ Data Preparation/004 EDD in Python_Downloadly.ir_en.srt
18.2 kB
23 - Creating Support Vector Machine Model in R/004 Classification SVM model using Linear Kernel_Downloadly.ir_en.srt
18.2 kB
37 - Time Series - Preprocessing in Python/001 Data Loading in Python_Downloadly.ir_en.srt
18.1 kB
37 - Time Series - Preprocessing in Python/007 Time Series - Upsampling and Downsampling in Python_Downloadly.ir_en.srt
18.0 kB
07 - Linear Regression/003 Assessing accuracy of predicted coefficients_Downloadly.ir_en.srt
17.8 kB
27 - ANN in R/003 Building,Compiling and Training_Downloadly.ir_en.srt
16.7 kB
38 - Time Series - Important Concepts/005 Differencing in Python_Downloadly.ir_en.srt
16.1 kB
24 - Introduction - Deep Learning/004 Python - Creating Perceptron model_Downloadly.ir_en.srt
16.1 kB
14 - Simple Decision Trees/013 Building a Regression Tree in R_Downloadly.ir_en.srt
15.9 kB
03 - Setting up R Studio and R crash course/007 Creating Barplots in R_Downloadly.ir_en.srt
15.4 kB
15 - Simple Classification Tree/004 Classification tree in Python _ Training_Downloadly.ir_en.srt
14.9 kB
40 - Time Series - ARIMA model/003 ARIMA model in Python_Downloadly.ir_en.srt
14.7 kB
07 - Linear Regression/010 Multiple Linear Regression in Python_Downloadly.ir_en.srt
14.6 kB
35 - Transfer Learning in R/001 Project - Transfer Learning - VGG16 (Implementation)_Downloadly.ir_en.srt
14.5 kB
06 - Data Preprocessing/010 Outlier Treatment in Python_Downloadly.ir_en.srt
14.5 kB
17 - Ensemble technique 2 - Random Forests/003 Using Grid Search in Python_Downloadly.ir_en.srt
14.0 kB
07 - Linear Regression/017 Subset selection techniques_Downloadly.ir_en.srt
14.0 kB
25 - Neural Networks - Stacking cells to create network/004 Some Important Concepts_Downloadly.ir_en.srt
14.0 kB
27 - ANN in R/006 Building Regression Model with Functional API_Downloadly.ir_en.srt
13.9 kB
02 - Setting up Python and Jupyter Notebook/004 Introduction to Jupyter_Downloadly.ir_en.srt
13.5 kB
06 - Data Preprocessing/008 EDD in R_Downloadly.ir_en.srt
13.5 kB
07 - Linear Regression/005 Simple Linear Regression in Python_Downloadly.ir_en.srt
13.4 kB
26 - ANN in Python/010 Using Functional API for complex architectures_Downloadly.ir_en.srt
13.3 kB
26 - ANN in Python/006 Building the Neural Network using Keras_Downloadly.ir_en.srt
13.2 kB
27 - ANN in R/002 Data Normalization and Test-Train Split_Downloadly.ir_en.srt
13.2 kB
04 - Basics of Statistics/003 Describing data Graphically_Downloadly.ir_en.srt
13.1 kB
25 - Neural Networks - Stacking cells to create network/002 Gradient Descent_Downloadly.ir_en.srt
13.0 kB
22 - Creating Support Vector Machine Model in Python/011 SVM Based classification model_Downloadly.ir_en.srt
12.7 kB
07 - Linear Regression/021 Ridge regression and Lasso in R_Downloadly.ir_en.srt
12.7 kB
16 - Ensemble technique 1 - Bagging/002 Ensemble technique 1 - Bagging in Python_Downloadly.ir_en.srt
12.6 kB
03 - Setting up R Studio and R crash course/003 Packages in R_Downloadly.ir_en.srt
12.5 kB
23 - Creating Support Vector Machine Model in R/008 SVM based Regression Model in R_Downloadly.ir_en.srt
12.3 kB
39 - Time Series - Implementation in Python/001 Test Train Split in Python_Downloadly.ir_en.srt
12.3 kB
03 - Setting up R Studio and R crash course/002 Basics of R and R studio_Downloadly.ir_en.srt
12.3 kB
14 - Simple Decision Trees/002 Understanding a Regression Tree_Downloadly.ir_en.srt
12.2 kB
06 - Data Preprocessing/023 Correlation Analysis_Downloadly.ir_en.srt
12.2 kB
11 - Linear Discriminant Analysis (LDA)/001 Linear Discriminant Analysis_Downloadly.ir_en.srt
12.2 kB
32 - Project _ Creating CNN model from scratch/001 Project in R - Data Preprocessing_Downloadly.ir_en.srt
12.2 kB
02 - Setting up Python and Jupyter Notebook/008 Working with Numpy Library of Python_Downloadly.ir_en.srt
12.1 kB
37 - Time Series - Preprocessing in Python/004 Time Series - Feature Engineering Basics_Downloadly.ir_en.srt
12.0 kB
06 - Data Preprocessing/007 EDD in Python_Downloadly.ir_en.srt
11.9 kB
41 - Time Series - SARIMA model/002 SARIMA model in Python_Downloadly.ir_en.srt
11.9 kB
23 - Creating Support Vector Machine Model in R/006 Polynomial Kernel with Hyperparameter Tuning_Downloadly.ir_en.srt
11.8 kB
18 - Ensemble technique 3 - Boosting/006 Ensemble technique 3c - XGBoost in Python_Downloadly.ir_en.srt
11.7 kB
08 - Classification Models_ Data Preparation/005 EDD in R_Downloadly.ir_en.srt
11.6 kB
14 - Simple Decision Trees/001 Basics of Decision Trees_Downloadly.ir_en.srt
11.5 kB
07 - Linear Regression/012 Test-train split_Downloadly.ir_en.srt
11.1 kB
20 - Support Vector Classifier/001 Support Vector classifiers_Downloadly.ir_en.srt
11.1 kB
10 - Logistic Regression/009 Creating Confusion Matrix in Python_Downloadly.ir_en.srt
11.1 kB
25 - Neural Networks - Stacking cells to create network/001 Basic Terminologies_Downloadly.ir_en.srt
11.1 kB
22 - Creating Support Vector Machine Model in Python/012 Hyper Parameter Tuning_Downloadly.ir_en.srt
11.0 kB
14 - Simple Decision Trees/017 Pruning a tree in Python_Downloadly.ir_en.srt
11.0 kB
10 - Logistic Regression/002 Training a Simple Logistic Model in Python_Downloadly.ir_en.srt
10.9 kB
12 - K-Nearest Neighbors classifier/001 Test-Train Split_Downloadly.ir_en.srt
10.8 kB
18 - Ensemble technique 3 - Boosting/005 AdaBoosting in R_Downloadly.ir_en.srt
10.8 kB
22 - Creating Support Vector Machine Model in Python/007 SVM based Regression Model in Python_Downloadly.ir_en.srt
10.7 kB
07 - Linear Regression/002 Basic Equations and Ordinary Least Squares (OLS) method_Downloadly.ir_en.srt
10.7 kB
38 - Time Series - Important Concepts/003 Decomposing Time Series in Python_Downloadly.ir_en.srt
10.7 kB
05 - Introduction to Machine Learning/002 Building a Machine Learning Model_Downloadly.ir_en.srt
10.5 kB
37 - Time Series - Preprocessing in Python/002 Time Series - Visualization Basics_Downloadly.ir_en.srt
10.5 kB
11 - Linear Discriminant Analysis (LDA)/003 Linear Discriminant Analysis in R_Downloadly.ir_en.srt
10.5 kB
24 - Introduction - Deep Learning/002 Perceptron_Downloadly.ir_en.srt
10.5 kB
39 - Time Series - Implementation in Python/004 Auto Regression Model creation in Python_Downloadly.ir_en.srt
10.4 kB
15 - Simple Classification Tree/005 Building a classification Tree in R_Downloadly.ir_en.srt
10.4 kB
02 - Setting up Python and Jupyter Notebook/009 Working with Pandas Library of Python_Downloadly.ir_en.srt
10.4 kB
27 - ANN in R/004 Evaluating and Predicting_Downloadly.ir_en.srt
10.4 kB
26 - ANN in Python/007 Compiling and Training the Neural Network model_Downloadly.ir_en.srt
10.3 kB
06 - Data Preprocessing/018 Variable transformation in R_Downloadly.ir_en.srt
10.2 kB
02 - Setting up Python and Jupyter Notebook/003 Opening Jupyter Notebook_Downloadly.ir_en.srt
10.1 kB
26 - ANN in Python/012 Hyperparameter Tuning_Downloadly.ir_en.srt
10.0 kB
12 - K-Nearest Neighbors classifier/003 Test-Train Split in R_Downloadly.ir_en.srt
10.0 kB
26 - ANN in Python/008 Evaluating performance and Predicting using Keras_Downloadly.ir_en.srt
10.0 kB
07 - Linear Regression/008 The F - statistic_Downloadly.ir_en.srt
9.9 kB
14 - Simple Decision Trees/018 Pruning a Tree in R_Downloadly.ir_en.srt
9.9 kB
36 - Time Series Analysis and Forecasting/005 Time Series - Basic Notations_Downloadly.ir_en.srt
9.9 kB
39 - Time Series - Implementation in Python/007 Moving Average model in Python_Downloadly.ir_en.srt
9.8 kB
06 - Data Preprocessing/025 Correlation Matrix in R_Downloadly.ir_en.srt
9.8 kB
08 - Classification Models_ Data Preparation/006 Outlier treatment in Python_Downloadly.ir_en.srt
9.8 kB
10 - Logistic Regression/010 Evaluating performance of model_Downloadly.ir_en.srt
9.6 kB
07 - Linear Regression/015 Test-Train Split in R_Downloadly.ir_en.srt
9.6 kB
08 - Classification Models_ Data Preparation/001 The Data and the Data Dictionary_Downloadly.ir_en.srt
9.5 kB
25 - Neural Networks - Stacking cells to create network/005 Hyperparameter_Downloadly.ir_en.srt
9.5 kB
07 - Linear Regression/006 Simple Linear Regression in R_Downloadly.ir_en.srt
9.5 kB
07 - Linear Regression/011 Multiple Linear Regression in R_Downloadly.ir_en.srt
9.4 kB
31 - Project _ Creating CNN model from scratch in Python/003 Project - Data Preprocessing in Python_Downloadly.ir_en.srt
9.4 kB
31 - Project _ Creating CNN model from scratch in Python/004 Project - Training CNN model in Python_Downloadly.ir_en.srt
9.4 kB
06 - Data Preprocessing/017 Variable transformation and deletion in Python_Downloadly.ir_en.srt
9.2 kB
07 - Linear Regression/019 Shrinkage methods_ Ridge and Lasso_Downloadly.ir_en.srt
9.2 kB
12 - K-Nearest Neighbors classifier/007 K-Nearest Neighbors in R_Downloadly.ir_en.srt
9.2 kB
15 - Simple Classification Tree/003 Classification tree in Python _ Preprocessing_Downloadly.ir_en.srt
9.1 kB
22 - Creating Support Vector Machine Model in Python/009 Classification model - Preprocessing_Downloadly.ir_en.srt
9.1 kB
23 - Creating Support Vector Machine Model in R/001 Importing Data into R_Downloadly.ir_en.srt
9.1 kB
27 - ANN in R/007 Complex Architectures using Functional API_Downloadly.ir_en.srt
9.1 kB
35 - Transfer Learning in R/002 Project - Transfer Learning - VGG16 (Performance)_Downloadly.ir_en.srt
9.0 kB
39 - Time Series - Implementation in Python/005 Auto Regression with Walk Forward validation in Python_Downloadly.ir_en.srt
9.0 kB
06 - Data Preprocessing/003 The Dataset and the Data Dictionary_Downloadly.ir_en.srt
9.0 kB
07 - Linear Regression/014 Test train split in Python_Downloadly.ir_en.srt
8.9 kB
12 - K-Nearest Neighbors classifier/004 K-Nearest Neighbors classifier_en.vtt
8.9 kB
40 - Time Series - ARIMA model/001 ACF and PACF_Downloadly.ir_en.srt
8.9 kB
10 - Logistic Regression/001 Logistic Regression_Downloadly.ir_en.srt
8.8 kB
18 - Ensemble technique 3 - Boosting/003 Gradient Boosting in R_Downloadly.ir_en.srt
8.8 kB
27 - ANN in R/005 ANN with NeuralNets Package_Downloadly.ir_en.srt
8.6 kB
07 - Linear Regression/004 Assessing Model Accuracy_ RSE and R squared_Downloadly.ir_en.srt
8.6 kB
02 - Setting up Python and Jupyter Notebook/010 Working with Seaborn Library of Python_Downloadly.ir_en.srt
8.4 kB
07 - Linear Regression/018 Subset selection in R_Downloadly.ir_en.srt
8.4 kB
39 - Time Series - Implementation in Python/002 Naive (Persistence) model in Python_Downloadly.ir_en.srt
8.4 kB
24 - Introduction - Deep Learning/003 Activation Functions_Downloadly.ir_en.srt
8.4 kB
28 - CNN - Basics/001 CNN Introduction_Downloadly.ir_en.srt
8.3 kB
26 - ANN in Python/003 Dataset for classification_Downloadly.ir_en.srt
8.1 kB
04 - Basics of Statistics/004 Measures of Centers_Downloadly.ir_en.srt
8.1 kB
41 - Time Series - SARIMA model/001 SARIMA model_Downloadly.ir_en.srt
8.1 kB
32 - Project _ Creating CNN model from scratch/005 Project in R - Data Augmentation_Downloadly.ir_en.srt
8.0 kB
18 - Ensemble technique 3 - Boosting/001 Boosting_Downloadly.ir_en.srt
8.0 kB
37 - Time Series - Preprocessing in Python/009 Moving Average_Downloadly.ir_en.srt
8.0 kB
28 - CNN - Basics/004 Filters and Feature maps_Downloadly.ir_en.srt
7.8 kB
13 - Comparing results from 3 models/001 Understanding the results of classification models_Downloadly.ir_en.srt
7.7 kB
31 - Project _ Creating CNN model from scratch in Python/001 Project - Introduction_Downloadly.ir_en.srt
7.7 kB
30 - Creating CNN model in R/002 Data Preprocessing_Downloadly.ir_en.srt
7.6 kB
10 - Logistic Regression/012 Predicting probabilities, assigning classes and making Confusion Matrix in R_Downloadly.ir_en.srt
7.6 kB
12 - K-Nearest Neighbors classifier/002 Test-Train Split in Python_Downloadly.ir_en.srt
7.6 kB
16 - Ensemble technique 1 - Bagging/001 Ensemble technique 1 - Bagging_Downloadly.ir_en.srt
7.5 kB
29 - Creating CNN model in Python/002 CNN model in Python - structure and Compile_Downloadly.ir_en.srt
7.4 kB
22 - Creating Support Vector Machine Model in Python/014 Radial Kernel with Hyperparameter Tuning_Downloadly.ir_en.srt
7.4 kB
33 - Project _ Data Augmentation for avoiding overfitting/001 Project - Data Augmentation Preprocessing_Downloadly.ir_en.srt
7.4 kB
14 - Simple Decision Trees/006 Importing the Data set into R_Downloadly.ir_en.srt
7.4 kB
23 - Creating Support Vector Machine Model in R/007 Radial Kernel with Hyperparameter Tuning_Downloadly.ir_en.srt
7.4 kB
16 - Ensemble technique 1 - Bagging/003 Bagging in R_Downloadly.ir_en.srt
7.3 kB
03 - Setting up R Studio and R crash course/006 Inputting data part 3_ Importing from CSV or Text files_Downloadly.ir_en.srt
7.2 kB
06 - Data Preprocessing/024 Correlation Analysis in Python_Downloadly.ir_en.srt
7.1 kB
07 - Linear Regression/013 Bias Variance trade-off_Downloadly.ir_en.srt
7.1 kB
23 - Creating Support Vector Machine Model in R/005 Hyperparameter Tuning for Linear Kernel_Downloadly.ir_en.srt
7.1 kB
12 - K-Nearest Neighbors classifier/006 K-Nearest Neighbors in Python_ Part 2_Downloadly.ir_en.srt
7.1 kB
33 - Project _ Data Augmentation for avoiding overfitting/002 Project - Data Augmentation Training and Results_Downloadly.ir_en.srt
7.0 kB
03 - Setting up R Studio and R crash course/001 Installing R and R studio_Downloadly.ir_en.srt
7.0 kB
08 - Classification Models_ Data Preparation/011 Variable transformation in R_Downloadly.ir_en.srt
6.9 kB
15 - Simple Classification Tree/001 Classification tree_Downloadly.ir_en.srt
6.9 kB
21 - Support Vector Machines/001 Kernel Based Support Vector Machines_Downloadly.ir_en.srt
6.9 kB
17 - Ensemble technique 2 - Random Forests/002 Ensemble technique 2 - Random Forests in Python_Downloadly.ir_en.srt
6.9 kB
38 - Time Series - Important Concepts/004 Differencing_Downloadly.ir_en.srt
6.9 kB
30 - Creating CNN model in R/005 Model Performance_Downloadly.ir_en.srt
6.7 kB
22 - Creating Support Vector Machine Model in Python/006 Standardizing the data_Downloadly.ir_en.srt
6.7 kB
08 - Classification Models_ Data Preparation/013 Dummy variable creation in R_Downloadly.ir_en.srt
6.6 kB
06 - Data Preprocessing/004 Importing Data in Python_Downloadly.ir_en.srt
6.6 kB
36 - Time Series Analysis and Forecasting/004 Forecasting model creation - Steps 1 (Goal)_Downloadly.ir_en.srt
6.6 kB
29 - Creating CNN model in Python/003 CNN model in Python - Training and results_Downloadly.ir_en.srt
6.6 kB
07 - Linear Regression/007 Multiple Linear Regression_Downloadly.ir_en.srt
6.5 kB
30 - Creating CNN model in R/003 Creating Model Architecture_Downloadly.ir_en.srt
6.4 kB
28 - CNN - Basics/005 Channels_Downloadly.ir_en.srt
6.4 kB
06 - Data Preprocessing/021 Dummy variable creation in Python_Downloadly.ir_en.srt
6.4 kB
40 - Time Series - ARIMA model/004 ARIMA model with Walk Forward Validation in Python_Downloadly.ir_en.srt
6.4 kB
14 - Simple Decision Trees/010 Test-Train split in Python_Downloadly.ir_en.srt
6.3 kB
22 - Creating Support Vector Machine Model in Python/005 Test-Train Split_Downloadly.ir_en.srt
6.3 kB
08 - Classification Models_ Data Preparation/012 Dummy variable creation in Python_Downloadly.ir_en.srt
6.3 kB
03 - Setting up R Studio and R crash course/008 Creating Histograms in R_Downloadly.ir_en.srt
6.3 kB
26 - ANN in Python/004 Normalization and Test-Train split_Downloadly.ir_en.srt
6.3 kB
06 - Data Preprocessing/022 Dummy variable creation in R_Downloadly.ir_en.srt
6.2 kB
23 - Creating Support Vector Machine Model in R/002 Test-Train Split_Downloadly.ir_en.srt
6.2 kB
06 - Data Preprocessing/019 Non-usable variables_Downloadly.ir_en.srt
6.2 kB
10 - Logistic Regression/006 Training multiple predictor Logistic model in Python_Downloadly.ir_en.srt
6.2 kB
13 - Comparing results from 3 models/002 Summary of the three models_Downloadly.ir_en.srt
6.1 kB
07 - Linear Regression/009 Interpreting results of Categorical variables_Downloadly.ir_en.srt
6.1 kB
10 - Logistic Regression/004 Result of Simple Logistic Regression_Downloadly.ir_en.srt
6.0 kB
14 - Simple Decision Trees/005 Importing the Data set into Python_Downloadly.ir_en.srt
6.0 kB
22 - Creating Support Vector Machine Model in Python/003 Importing data for regression model_Downloadly.ir_en.srt
6.0 kB
28 - CNN - Basics/006 PoolingLayer_Downloadly.ir_en.srt
6.0 kB
12 - K-Nearest Neighbors classifier/005 K-Nearest Neighbors in Python_ Part 1_Downloadly.ir_en.srt
6.0 kB
14 - Simple Decision Trees/011 Splitting Data into Test and Train Set in R_Downloadly.ir_en.srt
6.0 kB
06 - Data Preprocessing/020 Dummy variable creation_ Handling qualitative data_Downloadly.ir_en.srt
5.9 kB
29 - Creating CNN model in Python/001 CNN model in Python - Preprocessing_Downloadly.ir_en.srt
5.9 kB
29 - Creating CNN model in Python/004 Comparison - Pooling vs Without Pooling in Python_Downloadly.ir_en.srt
5.7 kB
32 - Project _ Creating CNN model from scratch/002 CNN Project in R - Structure and Compile_Downloadly.ir_en.srt
5.7 kB
34 - Transfer Learning _ Basics/005 Transfer Learning_Downloadly.ir_en.srt
5.6 kB
18 - Ensemble technique 3 - Boosting/002 Ensemble technique 3a - Boosting in Python_Downloadly.ir_en.srt
5.6 kB
14 - Simple Decision Trees/008 Dummy Variable creation in Python_Downloadly.ir_en.srt
5.5 kB
19 - Maximum Margin Classifier/002 The Concept of a Hyperplane_Downloadly.ir_en.srt
5.4 kB
14 - Simple Decision Trees/015 Plotting decision tree in Python_Downloadly.ir_en.srt
5.4 kB
08 - Classification Models_ Data Preparation/002 Data Import in Python_Downloadly.ir_en.srt
5.4 kB
04 - Basics of Statistics/005 Measures of Dispersion_Downloadly.ir_en.srt
5.4 kB
40 - Time Series - ARIMA model/002 ARIMA model - Basics_Downloadly.ir_en.srt
5.2 kB
06 - Data Preprocessing/009 Outlier Treatment_Downloadly.ir_en.srt
5.2 kB
04 - Basics of Statistics/001 Types of Data_Downloadly.ir_en.srt
5.2 kB
39 - Time Series - Implementation in Python/006 Moving Average model -Basics_Downloadly.ir_en.srt
5.1 kB
28 - CNN - Basics/003 Padding_Downloadly.ir_en.srt
5.1 kB
10 - Logistic Regression/008 Confusion Matrix_Downloadly.ir_en.srt
5.0 kB
06 - Data Preprocessing/011 Outlier Treatment in R_Downloadly.ir_en.srt
5.0 kB
08 - Classification Models_ Data Preparation/008 Missing Value Imputation in Python_Downloadly.ir_en.srt
4.9 kB
08 - Classification Models_ Data Preparation/007 Outlier Treatment in R_Downloadly.ir_en.srt
4.9 kB
09 - The Three classification models/002 Why can't we use Linear Regression__en.vtt
4.9 kB
06 - Data Preprocessing/013 Missing Value Imputation in Python_Downloadly.ir_en.srt
4.9 kB
24 - Introduction - Deep Learning/001 Introduction to Neural Networks and Course flow_Downloadly.ir_en.srt
4.9 kB
17 - Ensemble technique 2 - Random Forests/004 Random Forest in R_Downloadly.ir_en.srt
4.9 kB
07 - Linear Regression/016 Regression models other than OLS_Downloadly.ir_en.srt
4.9 kB
14 - Simple Decision Trees/014 Evaluating model performance in Python_Downloadly.ir_en.srt
4.8 kB
03 - Setting up R Studio and R crash course/004 Inputting data part 1_ Inbuilt datasets of R_Downloadly.ir_en.srt
4.8 kB
34 - Transfer Learning _ Basics/001 ILSVRC_Downloadly.ir_en.srt
4.7 kB
17 - Ensemble technique 2 - Random Forests/001 Ensemble technique 2 - Random Forests_Downloadly.ir_en.srt
4.7 kB
38 - Time Series - Important Concepts/002 Random Walk_Downloadly.ir_en.srt
4.7 kB
14 - Simple Decision Trees/016 Pruning a tree_Downloadly.ir_en.srt
4.6 kB
01 - Introduction/001 Introduction_Downloadly.ir_en.srt
4.6 kB
02 - Setting up Python and Jupyter Notebook/005 Arithmetic operators in Python_ Python Basics_Downloadly.ir_en.srt
4.5 kB
18 - Ensemble technique 3 - Boosting/004 Ensemble technique 3b - AdaBoost in Python_Downloadly.ir_en.srt
4.5 kB
22 - Creating Support Vector Machine Model in Python/013 Polynomial Kernel with Hyperparameter Tuning_Downloadly.ir_en.srt
4.4 kB
08 - Classification Models_ Data Preparation/010 Variable transformation and Deletion in Python_Downloadly.ir_en.srt
4.4 kB
14 - Simple Decision Trees/012 Creating Decision tree in Python_Downloadly.ir_en.srt
4.4 kB
37 - Time Series - Preprocessing in Python/006 Time Series - Upsampling and Downsampling_Downloadly.ir_en.srt
4.4 kB
14 - Simple Decision Trees/009 Dependent- Independent Data split in Python_Downloadly.ir_en.srt
4.3 kB
22 - Creating Support Vector Machine Model in Python/004 X-y Split_Downloadly.ir_en.srt
4.3 kB
06 - Data Preprocessing/012 Missing Value Imputation_Downloadly.ir_en.srt
4.3 kB
10 - Logistic Regression/003 Training a Simple Logistic model in R_Downloadly.ir_en.srt
4.3 kB
30 - Creating CNN model in R/006 Comparison - Pooling vs Without Pooling in R_Downloadly.ir_en.srt
4.3 kB
26 - ANN in Python/002 Installing Tensorflow and Keras_Downloadly.ir_en.srt
4.2 kB
08 - Classification Models_ Data Preparation/009 Missing Value imputation in R_Downloadly.ir_en.srt
4.2 kB
06 - Data Preprocessing/014 Missing Value imputation in R_Downloadly.ir_en.srt
4.2 kB
06 - Data Preprocessing/006 Univariate analysis and EDD_Downloadly.ir_en.srt
4.1 kB
06 - Data Preprocessing/015 Seasonality in Data_Downloadly.ir_en.srt
4.1 kB
09 - The Three classification models/001 Three Classifiers and the problem statement_Downloadly.ir_en.srt
4.0 kB
26 - ANN in Python/001 Keras and Tensorflow_Downloadly.ir_en.srt
3.9 kB
02 - Setting up Python and Jupyter Notebook/002 This is a milestone__Downloadly.ir_en.srt
3.9 kB
14 - Simple Decision Trees/007 Missing value treatment in Python_Downloadly.ir_en.srt
3.8 kB
06 - Data Preprocessing/002 Data Exploration_Downloadly.ir_en.srt
3.8 kB
39 - Time Series - Implementation in Python/003 Auto Regression Model - Basics_Downloadly.ir_en.srt
3.7 kB
06 - Data Preprocessing/001 Gathering Business Knowledge_Downloadly.ir_en.srt
3.6 kB
14 - Simple Decision Trees/003 The stopping criteria for controlling tree growth_Downloadly.ir_en.srt
3.6 kB
19 - Maximum Margin Classifier/003 Maximum Margin Classifier_Downloadly.ir_en.srt
3.5 kB
03 - Setting up R Studio and R crash course/005 Inputting data part 2_ Manual data entry_Downloadly.ir_en.srt
3.4 kB
14 - Simple Decision Trees/004 The Data set for this part_Downloadly.ir_en.srt
3.4 kB
22 - Creating Support Vector Machine Model in Python/002 The Data set for the Regression problem_Downloadly.ir_en.srt
3.4 kB
34 - Transfer Learning _ Basics/004 GoogLeNet_Downloadly.ir_en.srt
3.3 kB
04 - Basics of Statistics/002 Types of Statistics_Downloadly.ir_en.srt
3.2 kB
32 - Project _ Creating CNN model from scratch/003 Project in R - Training_Downloadly.ir_en.srt
3.2 kB
30 - Creating CNN model in R/004 Compiling and training_Downloadly.ir_en.srt
3.2 kB
28 - CNN - Basics/002 Stride_Downloadly.ir_en.srt
3.1 kB
27 - ANN in R/001 Installing Keras and Tensorflow_Downloadly.ir_en.srt
3.1 kB
10 - Logistic Regression/005 Logistic with multiple predictors_Downloadly.ir_en.srt
3.0 kB
36 - Time Series Analysis and Forecasting/003 Forecasting model creation - Steps_Downloadly.ir_en.srt
3.0 kB
31 - Project _ Creating CNN model from scratch in Python/005 Project in Python - model results_Downloadly.ir_en.srt
3.0 kB
07 - Linear Regression/022 Heteroscedasticity_Downloadly.ir_en.srt
2.9 kB
08 - Classification Models_ Data Preparation/003 Importing the dataset into R_Downloadly.ir_en.srt
2.9 kB
06 - Data Preprocessing/005 Importing the dataset into R_Downloadly.ir_en.srt
2.9 kB
37 - Time Series - Preprocessing in Python/008 Time Series - Power Transformation_Downloadly.ir_en.srt
2.7 kB
10 - Logistic Regression/011 Evaluating model performance in Python_Downloadly.ir_en.srt
2.7 kB
02 - Setting up Python and Jupyter Notebook/001 Installing Python and Anaconda_Downloadly.ir_en.srt
2.7 kB
19 - Maximum Margin Classifier/004 Limitations of Maximum Margin Classifier_Downloadly.ir_en.srt
2.7 kB
32 - Project _ Creating CNN model from scratch/006 Project in R - Validation Performance_Downloadly.ir_en.srt
2.6 kB
11 - Linear Discriminant Analysis (LDA)/002 LDA in Python_Downloadly.ir_en.srt
2.6 kB
38 - Time Series - Important Concepts/001 White Noise_Downloadly.ir_en.srt
2.6 kB
32 - Project _ Creating CNN model from scratch/004 Project in R - Model Performance_Downloadly.ir_en.srt
2.6 kB
36 - Time Series Analysis and Forecasting/002 Time Series Forecasting - Use cases_Downloadly.ir_en.srt
2.6 kB
30 - Creating CNN model in R/001 CNN on MNIST Fashion Dataset - Model Architecture_Downloadly.ir_en.srt
2.4 kB
36 - Time Series Analysis and Forecasting/001 Introduction_Downloadly.ir_en.srt
2.2 kB
37 - Time Series - Preprocessing in Python/010 Exponential Smoothing_Downloadly.ir_en.srt
2.2 kB
10 - Logistic Regression/007 Training multiple predictor Logistic model in R_Downloadly.ir_en.srt
2.1 kB
26 - ANN in Python/005 Different ways to create ANN using Keras_Downloadly.ir_en.srt
2.0 kB
34 - Transfer Learning _ Basics/003 VGG16NET_Downloadly.ir_en.srt
2.0 kB
15 - Simple Classification Tree/002 The Data set for Classification problem_Downloadly.ir_en.srt
2.0 kB
22 - Creating Support Vector Machine Model in Python/008 The Data set for the Classification problem_Downloadly.ir_en.srt
2.0 kB
22 - Creating Support Vector Machine Model in Python/010 Classification model - Standardizing the data_Downloadly.ir_en.srt
1.9 kB
34 - Transfer Learning _ Basics/002 LeNET_Downloadly.ir_en.srt
1.9 kB
09 - The Three classification models/002 Why can't we use Linear Regression__Downloadly.ir_en.srt
1.9 kB
12 - K-Nearest Neighbors classifier/004 K-Nearest Neighbors classifier_Downloadly.ir_en.srt
1.8 kB
19 - Maximum Margin Classifier/001 Content flow_Downloadly.ir_en.srt
1.8 kB
42 - Bonus Section/001 The final milestone__Downloadly.ir_en.srt
1.8 kB
41 - Time Series - SARIMA model/003 Stationary time Series_Downloadly.ir_en.srt
1.7 kB
15 - Simple Classification Tree/006 Advantages and Disadvantages of Decision Trees_Downloadly.ir_en.srt
1.7 kB
07 - Linear Regression/001 The Problem Statement_Downloadly.ir_en.srt
1.7 kB
20 - Support Vector Classifier/002 Limitations of Support Vector Classifiers_Downloadly.ir_en.srt
1.7 kB
42 - Bonus Section/002 Congratulations & About your certificate.html
1.6 kB
22 - Creating Support Vector Machine Model in Python/001 Regression and Classification Models_Downloadly.ir_en.srt
812 Bytes
23 - Creating Support Vector Machine Model in R/003 More about test-train split.html
559 Bytes
01 - Introduction/002 Course Resources.html
370 Bytes
31 - Project _ Creating CNN model from scratch in Python/002 Data for the project.html
232 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>