搜索
[Coursera] Machine Learning by Andrew Ng
磁力链接/BT种子名称
[Coursera] Machine Learning by Andrew Ng
磁力链接/BT种子简介
种子哈希:
48d1f81a7493a4b5440b09796f76b89ee160419f
文件大小:
1.52G
已经下载:
6650
次
下载速度:
极快
收录时间:
2017-02-10
最近下载:
2025-06-01
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:48D1F81A7493A4B5440B09796F76B89EE160419F
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
3669755
房产
逍遥若若
母乳
leaked
美心
画
小欣欣
香香公主
欣小欣
精东
2160p+uhd
学生视图
mfcs-166
迷玩翻眼
宋宝
korean+jk
sasha
破处
主播潜入
技师加钱
euphoria
sky
忍法贴
客服自慰
mdwp
台北娜娜 司机
捷哥
宿舍+操
4k uhd
文件列表
01. Introduction (Week 1)/1 - 1 - Welcome (7 min).mp4
12.5 MB
01. Introduction (Week 1)/1 - 2 - What is Machine Learning- (7 min).mp4
9.8 MB
01. Introduction (Week 1)/1 - 3 - Supervised Learning (12 min).mp4
14.1 MB
01. Introduction (Week 1)/1 - 4 - Unsupervised Learning (14 min).mp4
17.5 MB
01. Introduction (Week 1)/docs-slides-Lecture1.pdf
3.5 MB
01. Introduction (Week 1)/docs-slides-Lecture1.pptx
4.2 MB
02. Linear Regression with One Variable (Week 1)/2 - 1 - Model Representation (8 min).mp4
9.4 MB
02. Linear Regression with One Variable (Week 1)/2 - 2 - Cost Function (8 min).mp4
9.5 MB
02. Linear Regression with One Variable (Week 1)/2 - 3 - Cost Function - Intuition I (11 min).mp4
12.8 MB
02. Linear Regression with One Variable (Week 1)/2 - 4 - Cost Function - Intuition II (9 min).mp4
11.9 MB
02. Linear Regression with One Variable (Week 1)/2 - 5 - Gradient Descent (11 min).mp4
14.2 MB
02. Linear Regression with One Variable (Week 1)/2 - 6 - Gradient Descent Intuition (12 min).mp4
13.7 MB
02. Linear Regression with One Variable (Week 1)/2 - 7 - Gradient Descent For Linear Regression (10 min).mp4
12.8 MB
02. Linear Regression with One Variable (Week 1)/2 - 8 - What-'s Next (6 min).mp4
6.4 MB
02. Linear Regression with One Variable (Week 1)/docs-slides-Lecture2.pdf
3.0 MB
02. Linear Regression with One Variable (Week 1)/docs-slides-Lecture2.pptx
5.6 MB
03. Linear Algebra Review (Week 1, Optional)/3 - 1 - Matrices and Vectors (9 min).mp4
10.0 MB
03. Linear Algebra Review (Week 1, Optional)/3 - 2 - Addition and Scalar Multiplication (7 min).mp4
7.8 MB
03. Linear Algebra Review (Week 1, Optional)/3 - 3 - Matrix Vector Multiplication (14 min).mp4
15.7 MB
03. Linear Algebra Review (Week 1, Optional)/3 - 4 - Matrix Matrix Multiplication (11 min).mp4
13.2 MB
03. Linear Algebra Review (Week 1, Optional)/3 - 5 - Matrix Multiplication Properties (9 min).mp4
10.3 MB
03. Linear Algebra Review (Week 1, Optional)/3 - 6 - Inverse and Transpose (11 min).mp4
13.5 MB
03. Linear Algebra Review (Week 1, Optional)/docs-slides-Lecture3.pdf
1.9 MB
03. Linear Algebra Review (Week 1, Optional)/docs-slides-Lecture3.pptx
5.2 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 1 - Multiple Features (8 min).mp4
9.3 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 2 - Gradient Descent for Multiple Variables (5 min).mp4
6.1 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp4
9.9 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp4
9.7 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 5 - Features and Polynomial Regression (8 min).mp4
8.7 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 6 - Normal Equation (16 min).mp4
18.0 MB
04. Linear Regression with Multiple Variables (Week 2)/4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mp4
6.5 MB
04. Linear Regression with Multiple Variables (Week 2)/docs-slides-Lecture4.pdf
1.8 MB
04. Linear Regression with Multiple Variables (Week 2)/docs-slides-Lecture4.pptx
4.6 MB
05. Octave Tutorial (Week 2)/5 - 1 - Basic Operations (14 min).mp4
18.6 MB
05. Octave Tutorial (Week 2)/5 - 2 - Moving Data Around (16 min).mp4
21.8 MB
05. Octave Tutorial (Week 2)/5 - 3 - Computing on Data (13 min).mp4
16.0 MB
05. Octave Tutorial (Week 2)/5 - 4 - Plotting Data (10 min).mp4
14.0 MB
05. Octave Tutorial (Week 2)/5 - 5 - Control Statements- for, while, if statements (13 min).mp4
17.3 MB
05. Octave Tutorial (Week 2)/5 - 6 - Vectorization (14 min).mp4
16.9 MB
05. Octave Tutorial (Week 2)/5 - 7 - Working on and Submitting Programming Exercises (4 min).mp4
5.7 MB
05. Octave Tutorial (Week 2)/docs-slides-Lecture5.pdf
248.2 kB
05. Octave Tutorial (Week 2)/docs-slides-Lecture5.pptx
417.1 kB
06. Logistic Regression (Week 3)/6 - 1 - Classification (8 min).mp4
9.2 MB
06. Logistic Regression (Week 3)/6 - 2 - Hypothesis Representation (7 min).mp4
8.7 MB
06. Logistic Regression (Week 3)/6 - 3 - Decision Boundary (15 min).mp4
17.6 MB
06. Logistic Regression (Week 3)/6 - 4 - Cost Function (11 min).mp4
13.7 MB
06. Logistic Regression (Week 3)/6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp4
12.5 MB
06. Logistic Regression (Week 3)/6 - 6 - Advanced Optimization (14 min).mp4
19.0 MB
06. Logistic Regression (Week 3)/6 - 7 - Multiclass Classification- One-vs-all (6 min).mp4
7.3 MB
06. Logistic Regression (Week 3)/docs-slides-Lecture6.pdf
2.2 MB
06. Logistic Regression (Week 3)/docs-slides-Lecture6.pptx
4.0 MB
07. Regularization (Week 3)/7 - 1 - The Problem of Overfitting (10 min).mp4
11.7 MB
07. Regularization (Week 3)/7 - 2 - Cost Function (10 min).mp4
12.2 MB
07. Regularization (Week 3)/7 - 3 - Regularized Linear Regression (11 min).mp4
12.6 MB
07. Regularization (Week 3)/7 - 4 - Regularized Logistic Regression (9 min).mp4
11.4 MB
07. Regularization (Week 3)/docs-slides-Lecture7.pdf
2.5 MB
07. Regularization (Week 3)/docs-slides-Lecture7.pptx
2.7 MB
08. Neural Networks Representation (Week 4)/8 - 1 - Non-linear Hypotheses (10 min).mp4
11.4 MB
08. Neural Networks Representation (Week 4)/8 - 2 - Neurons and the Brain (8 min).mp4
10.4 MB
08. Neural Networks Representation (Week 4)/8 - 3 - Model Representation I (12 min).mp4
14.2 MB
08. Neural Networks Representation (Week 4)/8 - 4 - Model Representation II (12 min).mp4
14.1 MB
08. Neural Networks Representation (Week 4)/8 - 5 - Examples and Intuitions I (7 min).mp4
8.3 MB
08. Neural Networks Representation (Week 4)/8 - 6 - Examples and Intuitions II (10 min).mp4
14.7 MB
08. Neural Networks Representation (Week 4)/8 - 7 - Multiclass Classification (4 min).mp4
5.1 MB
08. Neural Networks Representation (Week 4)/docs-slides-Lecture8.pdf
5.2 MB
08. Neural Networks Representation (Week 4)/docs-slides-Lecture8.pptx
42.3 MB
09. Neural Networks Learning (Week 5)/9 - 1 - Cost Function (7 min).mp4
8.0 MB
09. Neural Networks Learning (Week 5)/9 - 2 - Backpropagation Algorithm (12 min).mp4
14.6 MB
09. Neural Networks Learning (Week 5)/9 - 3 - Backpropagation Intuition (13 min).mp4
16.2 MB
09. Neural Networks Learning (Week 5)/9 - 4 - Implementation Note- Unrolling Parameters (8 min).mp4
9.8 MB
09. Neural Networks Learning (Week 5)/9 - 5 - Gradient Checking (12 min).mp4
14.2 MB
09. Neural Networks Learning (Week 5)/9 - 6 - Random Initialization (7 min).mp4
7.9 MB
09. Neural Networks Learning (Week 5)/9 - 7 - Putting It Together (14 min).mp4
17.1 MB
09. Neural Networks Learning (Week 5)/9 - 8 - Autonomous Driving (7 min).mp4
15.6 MB
09. Neural Networks Learning (Week 5)/docs-slides-Lecture9.pdf
3.5 MB
09. Neural Networks Learning (Week 5)/docs-slides-Lecture9.pptx
5.2 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 1 - Deciding What to Try Next (6 min).mp4
7.2 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 2 - Evaluating a Hypothesis (8 min).mp4
8.9 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 3 - Model Selection and Train-Validation-Test Sets (12 min).mp4
14.8 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 4 - Diagnosing Bias vs. Variance (8 min).mp4
9.4 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 5 - Regularization and Bias-Variance (11 min).mp4
13.2 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 6 - Learning Curves (12 min).mp4
13.5 MB
10. Advice for Applying Machine Learning (Week 6)/10 - 7 - Deciding What to Do Next Revisited (7 min).mp4
8.6 MB
10. Advice for Applying Machine Learning (Week 6)/docs-slides-Lecture10.pdf
1.6 MB
10. Advice for Applying Machine Learning (Week 6)/docs-slides-Lecture10.pptx
3.5 MB
11. Machine Learning System Design (Week 6)/11 - 1 - Prioritizing What to Work On (10 min).mp4
11.7 MB
11. Machine Learning System Design (Week 6)/11 - 2 - Error Analysis (13 min).mp4
16.2 MB
11. Machine Learning System Design (Week 6)/11 - 3 - Error Metrics for Skewed Classes (12 min).mp4
13.9 MB
11. Machine Learning System Design (Week 6)/11 - 4 - Trading Off Precision and Recall (14 min).mp4
16.8 MB
11. Machine Learning System Design (Week 6)/11 - 5 - Data For Machine Learning (11 min).mp4
13.5 MB
11. Machine Learning System Design (Week 6)/docs-slides-Lecture11.pdf
509.6 kB
11. Machine Learning System Design (Week 6)/docs-slides-Lecture11.pptx
2.0 MB
12. Support Vector Machines (Week 7)/12 - 1 - Optimization Objective (15 min).mp4
17.5 MB
12. Support Vector Machines (Week 7)/12 - 2 - Large Margin Intuition (11 min).mp4
12.4 MB
12. Support Vector Machines (Week 7)/12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp4
22.9 MB
12. Support Vector Machines (Week 7)/12 - 4 - Kernels I (16 min).mp4
18.4 MB
12. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min).mp4
18.3 MB
12. Support Vector Machines (Week 7)/12 - 6 - Using An SVM (21 min).mp4
25.1 MB
12. Support Vector Machines (Week 7)/docs-slides-Lecture12.pdf
2.4 MB
12. Support Vector Machines (Week 7)/docs-slides-Lecture12.pptx
5.6 MB
13. Clustering (Week 8)/13 - 1 - Unsupervised Learning- Introduction (3 min).mp4
4.0 MB
13. Clustering (Week 8)/13 - 2 - K-Means Algorithm (13 min).mp4
14.5 MB
13. Clustering (Week 8)/13 - 3 - Optimization Objective (7 min).mp4
8.5 MB
13. Clustering (Week 8)/13 - 4 - Random Initialization (8 min).mp4
9.1 MB
13. Clustering (Week 8)/13 - 5 - Choosing the Number of Clusters (8 min).mp4
9.9 MB
13. Clustering (Week 8)/docs-slides-Lecture13.pdf
2.3 MB
13. Clustering (Week 8)/docs-slides-Lecture13.pptx
2.9 MB
14. Dimensionality Reduction (Week 8)/14 - 1 - Motivation I- Data Compression (10 min).mp4
15.0 MB
14. Dimensionality Reduction (Week 8)/14 - 2 - Motivation II- Visualization (6 min).mp4
6.6 MB
14. Dimensionality Reduction (Week 8)/14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp4
11.0 MB
14. Dimensionality Reduction (Week 8)/14 - 4 - Principal Component Analysis Algorithm (15 min).mp4
18.7 MB
14. Dimensionality Reduction (Week 8)/14 - 5 - Choosing the Number of Principal Components (11 min).mp4
12.4 MB
14. Dimensionality Reduction (Week 8)/14 - 6 - Reconstruction from Compressed Representation (4 min).mp4
5.2 MB
14. Dimensionality Reduction (Week 8)/14 - 7 - Advice for Applying PCA (13 min).mp4
15.4 MB
14. Dimensionality Reduction (Week 8)/docs-slides-Lecture14.pdf
1.7 MB
14. Dimensionality Reduction (Week 8)/docs-slides-Lecture14.pptx
3.8 MB
15. Anomaly Detection (Week 9)/15 - 1 - Problem Motivation (8 min).mp4
8.8 MB
15. Anomaly Detection (Week 9)/15 - 2 - Gaussian Distribution (10 min).mp4
12.3 MB
15. Anomaly Detection (Week 9)/15 - 3 - Algorithm (12 min).mp4
14.6 MB
15. Anomaly Detection (Week 9)/15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp4
15.9 MB
15. Anomaly Detection (Week 9)/15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp4
9.7 MB
15. Anomaly Detection (Week 9)/15 - 6 - Choosing What Features to Use (12 min).mp4
14.8 MB
15. Anomaly Detection (Week 9)/15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mp4
16.7 MB
15. Anomaly Detection (Week 9)/15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mp4
17.1 MB
15. Anomaly Detection (Week 9)/docs-slides-Lecture15.pdf
3.5 MB
15. Anomaly Detection (Week 9)/docs-slides-Lecture15.pptx
6.3 MB
16. Recommender Systems (Week 9)/16 - 1 - Problem Formulation (8 min).mp4
11.2 MB
16. Recommender Systems (Week 9)/16 - 2 - Content Based Recommendations (15 min).mp4
17.8 MB
16. Recommender Systems (Week 9)/16 - 3 - Collaborative Filtering (10 min).mp4
12.3 MB
16. Recommender Systems (Week 9)/16 - 4 - Collaborative Filtering Algorithm (9 min).mp4
10.8 MB
16. Recommender Systems (Week 9)/16 - 5 - Vectorization- Low Rank Matrix Factorization (8 min).mp4
10.2 MB
16. Recommender Systems (Week 9)/16 - 6 - Implementational Detail- Mean Normalization (9 min).mp4
10.2 MB
16. Recommender Systems (Week 9)/docs-slides-Lecture16.pdf
1.5 MB
16. Recommender Systems (Week 9)/docs-slides-Lecture16.pptx
3.8 MB
17. Large Scale Machine Learning (Week 10)/17 - 1 - Learning With Large Datasets (6 min).mp4
6.8 MB
17. Large Scale Machine Learning (Week 10)/17 - 2 - Stochastic Gradient Descent (13 min).mp4
16.1 MB
17. Large Scale Machine Learning (Week 10)/17 - 3 - Mini-Batch Gradient Descent (6 min).mp4
7.7 MB
17. Large Scale Machine Learning (Week 10)/17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp4
14.0 MB
17. Large Scale Machine Learning (Week 10)/17 - 5 - Online Learning (13 min).mp4
15.6 MB
17. Large Scale Machine Learning (Week 10)/17 - 6 - Map Reduce and Data Parallelism (14 min).mp4
16.8 MB
17. Large Scale Machine Learning (Week 10)/docs-slides-Lecture17.pdf
2.1 MB
17. Large Scale Machine Learning (Week 10)/docs-slides-Lecture17.pptx
4.0 MB
18. Application Example Photo OCR/18 - 1 - Problem Description and Pipeline (7 min).mp4
8.3 MB
18. Application Example Photo OCR/18 - 2 - Sliding Windows (15 min).mp4
17.3 MB
18. Application Example Photo OCR/18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp4
19.7 MB
18. Application Example Photo OCR/18 - 4 - Ceiling Analysis- What Part of the Pipeline to Work on Next (14 min).mp4
16.9 MB
18. Application Example Photo OCR/docs-slides-Lecture18.pdf
2.1 MB
18. Application Example Photo OCR/docs-slides-Lecture18.pptx
6.4 MB
19. Conclusion/19 - 1 - Summary and Thank You (5 min).mp4
6.4 MB
_ Coursera.pdf
217.0 kB
Homeworks/01. Introduction.pdf
93.2 kB
Homeworks/02. Linear regression with one variable.pdf
619.4 kB
Homeworks/03. Linear Algebra.pdf
657.9 kB
Homeworks/04. Linear Regression with Multiple Variables.pdf
579.1 kB
Homeworks/05. Octave Tutorial.pdf
660.8 kB
Homeworks/06. Logistic Regression.pdf
692.1 kB
Homeworks/07. Regularization.pdf
624.2 kB
Homeworks/08. Neural Networks Representation.pdf
1.1 MB
Homeworks/09. Neural Networks Learning.pdf
619.7 kB
Homeworks/10. Advice for Applying Machine Learning.pdf
295.5 kB
Homeworks/11. Machine Learning System Design.pdf
583.2 kB
Homeworks/12. Support Vector Machines.pdf
2.0 MB
Homeworks/13. Clustering.pdf
591.6 kB
Homeworks/14. Anomaly Detection.pdf
646.7 kB
Homeworks/15. Principal Component Analysis.pdf
1.1 MB
Homeworks/16. Recommender Systems.pdf
704.8 kB
Homeworks/17. Large Scale Machine Learning.pdf
626.1 kB
Homeworks/18. Application Photo OCR.pdf
700.2 kB
Homeworks/View Review Questions _ Coursera.pdf
150.9 kB
Programming Assignments/Assignment Details _ Coursera.pdf
56.9 kB
Programming Assignments/List Assignments _ Coursera.pdf
197.3 kB
Programming Assignments/mlclass-ex1-004.zip
475.4 kB
Programming Assignments/mlclass-ex2-004.zip
243.9 kB
Programming Assignments/mlclass-ex3-004.zip
7.9 MB
Programming Assignments/mlclass-ex4-004.zip
8.0 MB
Programming Assignments/mlclass-ex5-004.zip
176.7 kB
Programming Assignments/mlclass-ex6-004.zip
914.5 kB
Programming Assignments/mlclass-ex7-004.zip
11.6 MB
Programming Assignments/mlclass-ex8-004.zip
810.0 kB
small-icon.hover.png
26.2 kB
Wiki - Course FAQ _ Coursera.pdf
100.4 kB
Wiki - Course Information _ Coursera.pdf
83.5 kB
Wiki - Course Schedule _ Coursera.pdf
72.1 kB
Wiki - Octave __ Matlab Tutorial _ Coursera.pdf
907.4 kB
Wiki - Tutoring _ Coursera.pdf
2.4 MB
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>