搜索
[FTUForum.com] [UDEMY] Deployment of Machine Learning Models [FTU]
磁力链接/BT种子名称
[FTUForum.com] [UDEMY] Deployment of Machine Learning Models [FTU]
磁力链接/BT种子简介
种子哈希:
3b823b10b12df325cf7a086be6f52a79802fd8c0
文件大小:
3.65G
已经下载:
1747
次
下载速度:
极快
收录时间:
2021-04-06
最近下载:
2025-05-21
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:3B823B10B12DF325CF7A086BE6F52A79802FD8C0
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
muyang
【無修正】
夏柔萱、
娜娜最新
jufe189
众筹
鲨鱼裤
张茹
pthc girl
甄嬛传
白菜
+妞妞妞妞
yuga
射口里
commando
伪娘扣扣机
名模私拍
留学生和黑
台湾小
노모 유출
佛爷 大奶
中出 无码
眼镜
传媒电视剧
#patreon
mdhs-0001
美波
抖动
夏柔萱 护士
潮喷了三次
文件列表
4. Building a Reproducible Machine Learning Pipeline/3. Designing a Custom Pipeline.mp4
160.3 MB
2. Machine Learning Pipeline - Research Environment/6. Data Analysis - Demo.mp4
142.0 MB
2. Machine Learning Pipeline - Research Environment/7. Feature Engineering - Demo.mp4
102.9 MB
13. A Deep Learning Model with Big Data/3. Building a CNN in the Research Environment.mp4
93.1 MB
4. Building a Reproducible Machine Learning Pipeline/2. Procedural Programming Pipeline.mp4
90.4 MB
4. Building a Reproducible Machine Learning Pipeline/5. Third Party Pipeline Create Scikit-Learn compatible Feature Transformers.mp4
88.4 MB
13. A Deep Learning Model with Big Data/4. Production Code for a CNN Learning Pipeline.mp4
83.4 MB
5. Course Setup and Key Tools/9. Section5.5b - Virtualenv Introduction.mp4
83.2 MB
7. Serving the model via REST API/7. 7.6 - API Schema Validation.mp4
81.9 MB
3. Machine Learning System Architecture/5. Building a Reproducible Machine Learning Pipeline.mp4
80.8 MB
6. Creating a Machine Learning Pipeline Application/9. 6.8 - Building the Package.mp4
79.6 MB
13. A Deep Learning Model with Big Data/8. 13.8 - Packaging the CNN.mp4
75.4 MB
6. Creating a Machine Learning Pipeline Application/8. 6.7 - Versioning and Logging.mp4
73.9 MB
8. Continuous Integration and Deployment Pipelines/4. 8.4 - Publishing the Model to Gemfury.mp4
72.5 MB
2. Machine Learning Pipeline - Research Environment/10. Getting Ready for Deployment - Demo.mp4
71.1 MB
2. Machine Learning Pipeline - Research Environment/1. Machine Learning Pipeline Overview.mp4
63.5 MB
12. Deploying to IaaS (AWS ECS)/12. 12.11 - Creating the ECS Cluster with the EC2 Launch Method.mp4
62.8 MB
2. Machine Learning Pipeline - Research Environment/2. Machine Learning Pipeline Feature Engineering.mp4
60.5 MB
4. Building a Reproducible Machine Learning Pipeline/4. Leveraging a Third Party Pipeline Scikit-Learn.mp4
59.4 MB
8. Continuous Integration and Deployment Pipelines/3. 8.3 - Setup Circle CI Config.mp4
53.3 MB
9. Differential Testing/2. 9.2 - Setting up Differential Tests.mp4
52.7 MB
8. Continuous Integration and Deployment Pipelines/5. 8.5 - Testing the CI Pipeline.mp4
52.6 MB
12. Deploying to IaaS (AWS ECS)/10. 12.9 - Uploading Images to the Elastic Container Registry (ECR).mp4
52.2 MB
2. Machine Learning Pipeline - Research Environment/3. Machine Learning Pipeline Feature Selection.mp4
50.8 MB
1. Introduction/2. Course curriculum overview.mp4
50.6 MB
11. Running Apps with Containers (Docker)/5. 11.5 Releasing to Heroku with Docker.mp4
49.2 MB
6. Creating a Machine Learning Pipeline Application/2. 6.2 - Training the Model.mp4
48.5 MB
6. Creating a Machine Learning Pipeline Application/3. 6.3 - Connecting the Pipeline.mp4
47.6 MB
6. Creating a Machine Learning Pipeline Application/5. 6.4 - Making Predictions with the Model.mp4
46.9 MB
8. Continuous Integration and Deployment Pipelines/1.1 section8.1.mp4.mp4
43.9 MB
13. A Deep Learning Model with Big Data/9. 13.9 - Adding the CNN to the API.mp4
43.3 MB
3. Machine Learning System Architecture/2. Specific Challenges of Machine Learning Systems.mp4
41.0 MB
7. Serving the model via REST API/5. 7.4 - Adding the Prediction Endpoint.mp4
40.8 MB
12. Deploying to IaaS (AWS ECS)/11. 12.10 - Creating the ECS Cluster with Fargate Launch Method.mp4
40.0 MB
5. Course Setup and Key Tools/3. Section 5.3 - How to Use the Course Resources, Monorepos + Git Refresher.mp4
39.6 MB
1. Introduction/1. Introduction to the course.mp4
39.4 MB
5. Course Setup and Key Tools/4. Section5.3b - Opening Pull Requests.mp4
37.9 MB
2. Machine Learning Pipeline - Research Environment/8. Feature Selection - Demo.mp4
37.1 MB
7. Serving the model via REST API/2. 7.2 - Creating the API Skeleton.mp4
37.1 MB
2. Machine Learning Pipeline - Research Environment/9. Model Building - Demo.mp4
35.8 MB
9. Differential Testing/3. 9.3 - Differential Tests in CI (Part 1 of 2).mp4
35.2 MB
7. Serving the model via REST API/4. 7.3 - Adding Config and Logging.mp4
34.6 MB
9. Differential Testing/4. 9.4 - Differential Tests in CI (Part 2 of 2).mp4
34.4 MB
6. Creating a Machine Learning Pipeline Application/6. 6.5 - Data Validation in the Model Package.mp4
34.1 MB
10. Deploying to a PaaS (Heroku) without Containers/3. 10.3 - Heroku Config.mp4
33.8 MB
11. Running Apps with Containers (Docker)/1. 11.1 Introduction to Containers and Docker.mp4
33.0 MB
5. Course Setup and Key Tools/13. Section 5.7 - Engineering and Python Best Practices.mp4
32.9 MB
12. Deploying to IaaS (AWS ECS)/13. 12.12 - Updating the Cluster Containers.mp4
32.5 MB
3. Machine Learning System Architecture/3. Machine Learning System Approaches.mp4
31.5 MB
3. Machine Learning System Architecture/4. Machine Learning System Component Breakdown.mp4
30.9 MB
10. Deploying to a PaaS (Heroku) without Containers/5. 10.5 - Deploying to Heroku via CI.mp4
30.5 MB
12. Deploying to IaaS (AWS ECS)/7. 12.6 - Installing the AWS CLI.mp4
30.3 MB
4. Building a Reproducible Machine Learning Pipeline/8. Bonus Should feature selection be part of the pipeline.mp4
30.2 MB
8. Continuous Integration and Deployment Pipelines/1. 8.1 - Introduction to CICD.mp4
29.8 MB
5. Course Setup and Key Tools/2. Section 5.2 - Installing and Configuring Git.mp4
29.2 MB
10. Deploying to a PaaS (Heroku) without Containers/1. 10.1 - Introduction.mp4
28.2 MB
11. Running Apps with Containers (Docker)/4. 11.4 Building and Running the Docker Container.mp4
28.0 MB
11. Running Apps with Containers (Docker)/2. 11.2 Installing Docker.mp4
27.9 MB
6. Creating a Machine Learning Pipeline Application/7. 6.6 - Feature Engineering in the Pipeline.mp4
27.5 MB
12. Deploying to IaaS (AWS ECS)/2. 12.2 - AWS Costs and Caution.mp4
26.7 MB
2. Machine Learning Pipeline - Research Environment/11. Bonus Machine Learning Pipeline Additional Resources.mp4
26.7 MB
5. Course Setup and Key Tools/11. Section5.5d - Virtualenv refresher.mp4
26.6 MB
7. Serving the model via REST API/1. 7.1 - Introduction.mp4
26.3 MB
12. Deploying to IaaS (AWS ECS)/4. 12.3b - Container Orchestration Options Kubernetes, ECS, Docker Swarm.mp4
24.9 MB
12. Deploying to IaaS (AWS ECS)/15. 12.14 - Deploying to ECS via the CI pipeline.mp4
24.7 MB
12. Deploying to IaaS (AWS ECS)/6. 12.5 - Setting Permissions with IAM.mp4
24.3 MB
12. Deploying to IaaS (AWS ECS)/3. 12.3a - Intro to AWS ECS.mp4
23.9 MB
5. Course Setup and Key Tools/7. Section 5.4b - System Path and Pythonpath Demo.mp4
22.9 MB
11. Running Apps with Containers (Docker)/3. 11.3 Creating Our API App Dockerfile.mp4
22.6 MB
10. Deploying to a PaaS (Heroku) without Containers/2. 10.2 - Heroku Account Creation.mp4
21.9 MB
12. Deploying to IaaS (AWS ECS)/8. 12.7 - Configuring the AWS CLI.mp4
21.8 MB
13. A Deep Learning Model with Big Data/10. 13.10 - Additional Considerations and Wrap Up.mp4
21.8 MB
4. Building a Reproducible Machine Learning Pipeline/1. Production Code overview.mp4
20.2 MB
12. Deploying to IaaS (AWS ECS)/1. 12.1 - Introduction to AWS.mp4
19.6 MB
9. Differential Testing/1. 9.1 - Introduction.mp4
19.5 MB
5. Course Setup and Key Tools/5. Section5.3c - Primer on Monorepos.mp4
19.2 MB
2. Machine Learning Pipeline - Research Environment/4. Machine Learning Pipeline Model Building.mp4
18.7 MB
7. Serving the model via REST API/3. 7.2b - Flask Crash Course.mp4
18.7 MB
1. Introduction/3. Knowledge requirements.mp4
18.0 MB
13. A Deep Learning Model with Big Data/5. Reproducibility in Neural Networks.mp4
17.8 MB
13. A Deep Learning Model with Big Data/2. Introduction to a Large Dataset - Plant Seedlings Images.mp4
17.5 MB
5. Course Setup and Key Tools/1. Section 5.1 - Introduction.mp4
16.7 MB
7. Serving the model via REST API/6. 7.5 - Adding a Version Endpoint.mp4
16.2 MB
13. A Deep Learning Model with Big Data/1. Challenges of using Big Data in Machine Learning.mp4
16.0 MB
6. Creating a Machine Learning Pipeline Application/1. 6.1 - Introduction.mp4
15.0 MB
10. Deploying to a PaaS (Heroku) without Containers/6. 10.6 - Wrap Up.mp4
14.2 MB
1. Introduction/6.1 DMLM_Slides.zip.zip
14.0 MB
6. Creating a Machine Learning Pipeline Application/10. 6.9 - Wrap Up.mp4
13.9 MB
9. Differential Testing/5. 9.5 Wrap Up.mp4
13.3 MB
5. Course Setup and Key Tools/12. Section 5.6 - Text Editors IDEs.mp4
13.0 MB
10. Deploying to a PaaS (Heroku) without Containers/4. 10.4 - Testing the Deployment Manually.mp4
12.9 MB
3. Machine Learning System Architecture/1. Machine Learning System Architecture and Why it Matters.mp4
11.4 MB
8. Continuous Integration and Deployment Pipelines/2. 8.2 - Setting up CircleCI.mp4
11.1 MB
4. Building a Reproducible Machine Learning Pipeline/6. Third Party Pipeline Closing Remarks.mp4
10.5 MB
5. Course Setup and Key Tools/10. Section5.5c - Requirements files Introduction.mp4
10.0 MB
12. Deploying to IaaS (AWS ECS)/9. 12.8 - Intro the Elastic Container Registry (ECR).mp4
9.8 MB
12. Deploying to IaaS (AWS ECS)/16. 12.15 - Wrap Up.mp4
9.4 MB
5. Course Setup and Key Tools/6. Section 5.4a - Operating System Differences and Gotchas.mp4
8.6 MB
5. Course Setup and Key Tools/8. Section 5.5a - Quick Word for More Advanced Students.mp4
8.6 MB
11. Running Apps with Containers (Docker)/6. 11.6 - Wrap Up.mp4
8.1 MB
12. Deploying to IaaS (AWS ECS)/14. 12.13 - Tearing down the ECS Cluster.mp4
7.3 MB
7. Serving the model via REST API/8. 7.7 - Wrap Up.mp4
6.6 MB
5. Course Setup and Key Tools/14. Section 5.8 - Wrap Up.mp4
6.3 MB
8. Continuous Integration and Deployment Pipelines/6. 8.6 - Wrap Up.mp4
5.6 MB
12. Deploying to IaaS (AWS ECS)/5. 12.4 - Create an AWS Account.mp4
5.1 MB
1. Introduction/7.1 DMLM_Notes.zip.zip
1.6 MB
13. A Deep Learning Model with Big Data/3.1 CNN_Analysis_and Model.zip.zip
1.6 MB
2. Machine Learning Pipeline - Research Environment/5.1 MLPipeline-Notebooks.zip.zip
1.2 MB
14. Common Issues found during deployment/1.1 Troubleshooting.pdf.pdf
228.7 kB
7. Serving the model via REST API/2.1 Section7.2_Notes.pdf.pdf
149.8 kB
FreeCoursesOnline.Me.html
110.9 kB
8. Continuous Integration and Deployment Pipelines/4.1 Section8.4_Notes.pdf.pdf
103.2 kB
9. Differential Testing/4.1 Section9.4_Notes.pdf.pdf
103.0 kB
FTUForum.com.html
102.8 kB
5. Course Setup and Key Tools/4.1 Section5.3b_Notes.pdf.pdf
102.0 kB
6. Creating a Machine Learning Pipeline Application/4.1 Section6.4_Notes.pdf.pdf
101.1 kB
6. Creating a Machine Learning Pipeline Application/5.1 Section6.4_Notes.pdf.pdf
101.1 kB
5. Course Setup and Key Tools/2.1 Section5.2_Notes.pdf.pdf
98.8 kB
11. Running Apps with Containers (Docker)/4.1 Section11.4_Notes.pdf.pdf
96.3 kB
5. Course Setup and Key Tools/9.1 Section5.5b_Notes.pdf.pdf
94.4 kB
5. Course Setup and Key Tools/13.1 Section5.7_Notes.pdf.pdf
91.0 kB
8. Continuous Integration and Deployment Pipelines/5.1 Section8.5_Notes.pdf.pdf
91.0 kB
6. Creating a Machine Learning Pipeline Application/9.1 Section6.8_Notes.pdf.pdf
88.0 kB
5. Course Setup and Key Tools/3.1 Section5.3a_Notes.pdf.pdf
87.6 kB
5. Course Setup and Key Tools/12.1 Section5.6_Notes.pdf.pdf
86.9 kB
7. Serving the model via REST API/6.1 Section7.5_Notes.pdf.pdf
86.3 kB
5. Course Setup and Key Tools/11.1 Section5.5_Notes.pdf.pdf
85.8 kB
7. Serving the model via REST API/7.1 Section7.6_Notes.pdf.pdf
85.7 kB
7. Serving the model via REST API/4.1 Section7.3_Notes.pdf.pdf
85.1 kB
12. Deploying to IaaS (AWS ECS)/8.1 Section12.7_Notes.pdf.pdf
85.0 kB
11. Running Apps with Containers (Docker)/6.1 Section11.6_Notes.pdf.pdf
84.4 kB
7. Serving the model via REST API/3.1 Section7.2b_Notes.pdf.pdf
83.5 kB
7. Serving the model via REST API/5.1 Section7.4_Notes.pdf.pdf
83.5 kB
6. Creating a Machine Learning Pipeline Application/8.1 Section6.7_Notes.pdf.pdf
83.2 kB
6. Creating a Machine Learning Pipeline Application/6.1 Section6.5_Notes.pdf.pdf
81.2 kB
6. Creating a Machine Learning Pipeline Application/7.1 Section6.6_Notes.pdf.pdf
80.8 kB
3. Machine Learning System Architecture/4.1 Section3.4_Notes.pdf.pdf
80.7 kB
11. Running Apps with Containers (Docker)/2.1 Section11.2_Notes.pdf.pdf
79.7 kB
10. Deploying to a PaaS (Heroku) without Containers/1.1 Section10.1_Notes.pdf.pdf
78.5 kB
6. Creating a Machine Learning Pipeline Application/3.1 Section6.3_Notes.pdf.pdf
77.2 kB
12. Deploying to IaaS (AWS ECS)/2.1 Section12.2_Notes.pdf.pdf
76.5 kB
5. Course Setup and Key Tools/10.1 Section5.5c_Notes.pdf.pdf
75.5 kB
12. Deploying to IaaS (AWS ECS)/10.1 Section12.9_Notes.pdf.pdf
74.1 kB
13. A Deep Learning Model with Big Data/8.1 Section13.8_Notes.pdf.pdf
73.3 kB
3. Machine Learning System Architecture/3.1 Section3.3_Notes.pdf.pdf
72.7 kB
11. Running Apps with Containers (Docker)/1.1 Section11.1_Notes.pdf.pdf
71.9 kB
10. Deploying to a PaaS (Heroku) without Containers/4.1 Section10.4_Notes.pdf.pdf
71.4 kB
9. Differential Testing/5.1 Section9.5_Notes.pdf.pdf
71.1 kB
10. Deploying to a PaaS (Heroku) without Containers/3.1 Section10.3_Notes.pdf.pdf
70.6 kB
10. Deploying to a PaaS (Heroku) without Containers/5.1 Section10.5_Notes.pdf.pdf
69.5 kB
12. Deploying to IaaS (AWS ECS)/13.1 Section12.12_Notes.pdf.pdf
69.1 kB
9. Differential Testing/2.1 Section9.2_Notes.pdf.pdf
66.5 kB
5. Course Setup and Key Tools/6.1 Section5.4_Notes.pdf.pdf
66.0 kB
5. Course Setup and Key Tools/7.1 Section5.4_Notes.pdf.pdf
66.0 kB
12. Deploying to IaaS (AWS ECS)/15.1 Section12.14_Notes.pdf.pdf
65.7 kB
10. Deploying to a PaaS (Heroku) without Containers/6.1 Section10.6_Notes.pdf.pdf
65.4 kB
8. Continuous Integration and Deployment Pipelines/3.1 Section8.3_Notes.pdf.pdf
65.4 kB
7. Serving the model via REST API/1.1 Section7.1_Notes.pdf.pdf
64.9 kB
10. Deploying to a PaaS (Heroku) without Containers/2.1 Section10.2_Notes.pdf.pdf
62.9 kB
12. Deploying to IaaS (AWS ECS)/14.1 Section12.13_Notes.pdf.pdf
61.5 kB
13. A Deep Learning Model with Big Data/10.1 Section13.10_Notes.pdf.pdf
61.5 kB
8. Continuous Integration and Deployment Pipelines/2.1 Section8.2_Notes.pdf.pdf
60.2 kB
11. Running Apps with Containers (Docker)/3.1 Section11.3_Notes.pdf.pdf
59.9 kB
12. Deploying to IaaS (AWS ECS)/6.1 Section12.5_Notes.pdf.pdf
59.3 kB
12. Deploying to IaaS (AWS ECS)/12.1 Section12.11_Notes.pdf.pdf
58.8 kB
12. Deploying to IaaS (AWS ECS)/7.1 Section12.6_Notes.pdf.pdf
58.3 kB
12. Deploying to IaaS (AWS ECS)/11.1 Section12.10_Notes.pdf.pdf
58.2 kB
12. Deploying to IaaS (AWS ECS)/16.1 Section12.15_Notes.pdf.pdf
57.9 kB
11. Running Apps with Containers (Docker)/5.1 Section11.5_Notes.pdf.pdf
57.9 kB
12. Deploying to IaaS (AWS ECS)/9.1 Section12.8_Notes.pdf.pdf
56.6 kB
12. Deploying to IaaS (AWS ECS)/3.1 Section12.3_Notes.pdf.pdf
56.5 kB
12. Deploying to IaaS (AWS ECS)/4.1 Section12.3_Notes.pdf.pdf
56.5 kB
5. Course Setup and Key Tools/5.1 Section5.3c_Notes.pdf.pdf
55.2 kB
12. Deploying to IaaS (AWS ECS)/5.1 Section12.4_Notes.pdf.pdf
54.8 kB
13. A Deep Learning Model with Big Data/9.1 Section13.9_Notes.pdf.pdf
54.5 kB
Discuss.FTUForum.com.html
32.7 kB
2. Machine Learning Pipeline - Research Environment/6. Data Analysis - Demo.vtt
21.8 kB
4. Building a Reproducible Machine Learning Pipeline/3. Designing a Custom Pipeline.vtt
20.3 kB
2. Machine Learning Pipeline - Research Environment/7. Feature Engineering - Demo.vtt
14.4 kB
4. Building a Reproducible Machine Learning Pipeline/5. Third Party Pipeline Create Scikit-Learn compatible Feature Transformers.vtt
14.1 kB
4. Building a Reproducible Machine Learning Pipeline/2. Procedural Programming Pipeline.vtt
13.0 kB
3. Machine Learning System Architecture/5. Building a Reproducible Machine Learning Pipeline.vtt
13.0 kB
2. Machine Learning Pipeline - Research Environment/3. Machine Learning Pipeline Feature Selection.vtt
11.5 kB
13. A Deep Learning Model with Big Data/3. Building a CNN in the Research Environment.vtt
10.5 kB
4. Building a Reproducible Machine Learning Pipeline/4. Leveraging a Third Party Pipeline Scikit-Learn.vtt
9.8 kB
2. Machine Learning Pipeline - Research Environment/2. Machine Learning Pipeline Feature Engineering.vtt
9.5 kB
1. Introduction/2. Course curriculum overview.vtt
9.5 kB
13. A Deep Learning Model with Big Data/4. Production Code for a CNN Learning Pipeline.vtt
9.4 kB
2. Machine Learning Pipeline - Research Environment/10. Getting Ready for Deployment - Demo.vtt
9.2 kB
2. Machine Learning Pipeline - Research Environment/1. Machine Learning Pipeline Overview.vtt
9.0 kB
1. Introduction/1. Introduction to the course.vtt
7.8 kB
6. Creating a Machine Learning Pipeline Application/9. 6.8 - Building the Package.vtt
7.4 kB
8. Continuous Integration and Deployment Pipelines/4. 8.4 - Publishing the Model to Gemfury.vtt
7.4 kB
7. Serving the model via REST API/7. 7.6 - API Schema Validation.vtt
7.3 kB
6. Creating a Machine Learning Pipeline Application/8. 6.7 - Versioning and Logging.vtt
7.2 kB
5. Course Setup and Key Tools/9. Section5.5b - Virtualenv Introduction.vtt
7.1 kB
4. Building a Reproducible Machine Learning Pipeline/8. Bonus Should feature selection be part of the pipeline.vtt
7.0 kB
3. Machine Learning System Architecture/2. Specific Challenges of Machine Learning Systems.vtt
6.9 kB
12. Deploying to IaaS (AWS ECS)/12. 12.11 - Creating the ECS Cluster with the EC2 Launch Method.vtt
6.5 kB
8. Continuous Integration and Deployment Pipelines/3. 8.3 - Setup Circle CI Config.vtt
6.4 kB
13. A Deep Learning Model with Big Data/8. 13.8 - Packaging the CNN.vtt
6.3 kB
3. Machine Learning System Architecture/4. Machine Learning System Component Breakdown.vtt
6.2 kB
5. Course Setup and Key Tools/13. Section 5.7 - Engineering and Python Best Practices.vtt
6.1 kB
4. Building a Reproducible Machine Learning Pipeline/5.1 preprocessors.py.py
5.7 kB
6. Creating a Machine Learning Pipeline Application/2. 6.2 - Training the Model.vtt
5.4 kB
11. Running Apps with Containers (Docker)/5. 11.5 Releasing to Heroku with Docker.vtt
5.3 kB
3. Machine Learning System Architecture/3. Machine Learning System Approaches.vtt
5.3 kB
2. Machine Learning Pipeline - Research Environment/9. Model Building - Demo.vtt
5.3 kB
8. Continuous Integration and Deployment Pipelines/1. 8.1 - Introduction to CICD.vtt
5.1 kB
8. Continuous Integration and Deployment Pipelines/5. 8.5 - Testing the CI Pipeline.vtt
5.0 kB
10. Deploying to a PaaS (Heroku) without Containers/3. 10.3 - Heroku Config.vtt
5.0 kB
6. Creating a Machine Learning Pipeline Application/5. 6.4 - Making Predictions with the Model.vtt
4.9 kB
13. A Deep Learning Model with Big Data/4.1 CNNProdCode.zip.zip
4.8 kB
12. Deploying to IaaS (AWS ECS)/3. 12.3a - Intro to AWS ECS.vtt
4.6 kB
10. Deploying to a PaaS (Heroku) without Containers/1. 10.1 - Introduction.vtt
4.5 kB
1. Introduction/3. Knowledge requirements.vtt
4.5 kB
11. Running Apps with Containers (Docker)/1. 11.1 Introduction to Containers and Docker.vtt
4.5 kB
12. Deploying to IaaS (AWS ECS)/10. 12.9 - Uploading Images to the Elastic Container Registry (ECR).vtt
4.3 kB
9. Differential Testing/2. 9.2 - Setting up Differential Tests.vtt
4.3 kB
2. Machine Learning Pipeline - Research Environment/8. Feature Selection - Demo.vtt
4.2 kB
6. Creating a Machine Learning Pipeline Application/3. 6.3 - Connecting the Pipeline.vtt
4.1 kB
7. Serving the model via REST API/5. 7.4 - Adding the Prediction Endpoint.vtt
4.1 kB
13. A Deep Learning Model with Big Data/9. 13.9 - Adding the CNN to the API.vtt
4.0 kB
1. Introduction/5. Guide to Setting up your Computer.html
4.0 kB
7. Serving the model via REST API/4. 7.3 - Adding Config and Logging.vtt
4.0 kB
12. Deploying to IaaS (AWS ECS)/11. 12.10 - Creating the ECS Cluster with Fargate Launch Method.vtt
3.9 kB
13. A Deep Learning Model with Big Data/5. Reproducibility in Neural Networks.vtt
3.8 kB
7. Serving the model via REST API/1. 7.1 - Introduction.vtt
3.8 kB
10. Deploying to a PaaS (Heroku) without Containers/5. 10.5 - Deploying to Heroku via CI.vtt
3.8 kB
11. Running Apps with Containers (Docker)/4. 11.4 Building and Running the Docker Container.vtt
3.7 kB
13. A Deep Learning Model with Big Data/6. Setting the Seed for Keras.html
3.7 kB
12. Deploying to IaaS (AWS ECS)/4. 12.3b - Container Orchestration Options Kubernetes, ECS, Docker Swarm.vtt
3.7 kB
12. Deploying to IaaS (AWS ECS)/13. 12.12 - Updating the Cluster Containers.vtt
3.6 kB
2. Machine Learning Pipeline - Research Environment/4. Machine Learning Pipeline Model Building.vtt
3.6 kB
1. Introduction/4. How to Approach this course.html
3.4 kB
4. Building a Reproducible Machine Learning Pipeline/1. Production Code overview.vtt
3.4 kB
5. Course Setup and Key Tools/3. Section 5.3 - How to Use the Course Resources, Monorepos + Git Refresher.vtt
3.3 kB
12. Deploying to IaaS (AWS ECS)/1. 12.1 - Introduction to AWS.vtt
3.3 kB
9. Differential Testing/4. 9.4 - Differential Tests in CI (Part 2 of 2).vtt
3.3 kB
5. Course Setup and Key Tools/2. Section 5.2 - Installing and Configuring Git.vtt
3.2 kB
6. Creating a Machine Learning Pipeline Application/6. 6.5 - Data Validation in the Model Package.vtt
3.2 kB
7. Serving the model via REST API/3. 7.2b - Flask Crash Course.vtt
3.2 kB
13. A Deep Learning Model with Big Data/10. 13.10 - Additional Considerations and Wrap Up.vtt
3.2 kB
12. Deploying to IaaS (AWS ECS)/6. 12.5 - Setting Permissions with IAM.vtt
3.1 kB
9. Differential Testing/3. 9.3 - Differential Tests in CI (Part 1 of 2).vtt
3.1 kB
5. Course Setup and Key Tools/4. Section5.3b - Opening Pull Requests.vtt
3.1 kB
11. Running Apps with Containers (Docker)/3. 11.3 Creating Our API App Dockerfile.vtt
2.9 kB
5. Course Setup and Key Tools/11. Section5.5d - Virtualenv refresher.vtt
2.9 kB
4. Building a Reproducible Machine Learning Pipeline/3.1 CustomPipeline.zip.zip
2.8 kB
12. Deploying to IaaS (AWS ECS)/8. 12.7 - Configuring the AWS CLI.vtt
2.8 kB
4. Building a Reproducible Machine Learning Pipeline/2.1 ProceduralPrograming.zip.zip
2.8 kB
5. Course Setup and Key Tools/7. Section 5.4b - System Path and Pythonpath Demo.vtt
2.7 kB
9. Differential Testing/1. 9.1 - Introduction.vtt
2.7 kB
12. Deploying to IaaS (AWS ECS)/15. 12.14 - Deploying to ECS via the CI pipeline.vtt
2.7 kB
2. Machine Learning Pipeline - Research Environment/11. Bonus Machine Learning Pipeline Additional Resources.vtt
2.6 kB
6. Creating a Machine Learning Pipeline Application/7. 6.6 - Feature Engineering in the Pipeline.vtt
2.6 kB
2. Machine Learning Pipeline - Research Environment/12. Randomness in Machine Learning - Setting the Seed.html
2.6 kB
11. Running Apps with Containers (Docker)/2. 11.2 Installing Docker.vtt
2.5 kB
13. A Deep Learning Model with Big Data/1. Challenges of using Big Data in Machine Learning.vtt
2.5 kB
12. Deploying to IaaS (AWS ECS)/2. 12.2 - AWS Costs and Caution.vtt
2.4 kB
4. Building a Reproducible Machine Learning Pipeline/6. Third Party Pipeline Closing Remarks.vtt
2.4 kB
12. Deploying to IaaS (AWS ECS)/7. 12.6 - Installing the AWS CLI.vtt
2.4 kB
6. Creating a Machine Learning Pipeline Application/10. 6.9 - Wrap Up.vtt
2.4 kB
10. Deploying to a PaaS (Heroku) without Containers/2. 10.2 - Heroku Account Creation.vtt
2.3 kB
6. Creating a Machine Learning Pipeline Application/1. 6.1 - Introduction.vtt
2.3 kB
3. Machine Learning System Architecture/1. Machine Learning System Architecture and Why it Matters.vtt
2.3 kB
5. Course Setup and Key Tools/10. Section5.5c - Requirements files Introduction.vtt
2.3 kB
10. Deploying to a PaaS (Heroku) without Containers/6. 10.6 - Wrap Up.vtt
2.2 kB
5. Course Setup and Key Tools/5. Section5.3c - Primer on Monorepos.vtt
2.2 kB
5. Course Setup and Key Tools/1. Section 5.1 - Introduction.vtt
2.1 kB
9. Differential Testing/5. 9.5 Wrap Up.vtt
2.0 kB
13. A Deep Learning Model with Big Data/2. Introduction to a Large Dataset - Plant Seedlings Images.vtt
2.0 kB
7. Serving the model via REST API/6. 7.5 - Adding a Version Endpoint.vtt
2.0 kB
12. Deploying to IaaS (AWS ECS)/16. 12.15 - Wrap Up.vtt
1.9 kB
4. Building a Reproducible Machine Learning Pipeline/7. Scikit-Learn Pipeline - Code.html
1.9 kB
5. Course Setup and Key Tools/6. Section 5.4a - Operating System Differences and Gotchas.vtt
1.8 kB
10. Deploying to a PaaS (Heroku) without Containers/4. 10.4 - Testing the Deployment Manually.vtt
1.6 kB
5. Course Setup and Key Tools/12. Section 5.6 - Text Editors IDEs.vtt
1.6 kB
11. Running Apps with Containers (Docker)/6. 11.6 - Wrap Up.vtt
1.6 kB
8. Continuous Integration and Deployment Pipelines/2. 8.2 - Setting up CircleCI.vtt
1.6 kB
4. Building a Reproducible Machine Learning Pipeline/9. Bonus Additional Resources on Scikit-Learn.html
1.4 kB
5. Course Setup and Key Tools/14. Section 5.8 - Wrap Up.vtt
1.3 kB
7. Serving the model via REST API/8. 7.7 - Wrap Up.vtt
1.3 kB
6. Creating a Machine Learning Pipeline Application/4. 6.4a - Gotchas.html
1.2 kB
12. Deploying to IaaS (AWS ECS)/9. 12.8 - Intro the Elastic Container Registry (ECR).vtt
1.2 kB
4. Building a Reproducible Machine Learning Pipeline/10. Bonus Resources to Improve as a Python Developer.html
1.1 kB
3. Machine Learning System Architecture/6. Additional Reading Resources.html
1.1 kB
1. Introduction/8. FAQ Where can I learn more about the required skills.html
1.0 kB
8. Continuous Integration and Deployment Pipelines/6. 8.6 - Wrap Up.vtt
998 Bytes
15. Final Section/1. Bonus Discount for other courses.html
814 Bytes
5. Course Setup and Key Tools/8. Section 5.5a - Quick Word for More Advanced Students.vtt
768 Bytes
12. Deploying to IaaS (AWS ECS)/14. 12.13 - Tearing down the ECS Cluster.vtt
740 Bytes
2. Machine Learning Pipeline - Research Environment/14. FAQ Where can I learn more about the pipeline steps.html
623 Bytes
12. Deploying to IaaS (AWS ECS)/5. 12.4 - Create an AWS Account.vtt
603 Bytes
[TGx]Downloaded from torrentgalaxy.org.txt
524 Bytes
2. Machine Learning Pipeline - Research Environment/13. Randomness in Machine Learning - Additional reading resources.html
522 Bytes
13. A Deep Learning Model with Big Data/7. Seed for Neural Networks - Additional reading resources.html
397 Bytes
How you can help Team-FTU.txt
235 Bytes
14. Common Issues found during deployment/1. Troubleshooting.html
105 Bytes
2. Machine Learning Pipeline - Research Environment/5. Jupyter notebooks covered in this section.html
93 Bytes
1. Introduction/6. Slides covered in this course.html
92 Bytes
1. Introduction/7. Notes covered in this course.html
91 Bytes
Torrent Downloaded From GloDls.to.txt
84 Bytes
7. Serving the model via REST API/2. 7.2 - Creating the API Skeleton.vtt
0 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>