搜索
Udemy - The Data Science Course Complete Data Science Bootcamp 2025 (12.2024)
磁力链接/BT种子名称
Udemy - The Data Science Course Complete Data Science Bootcamp 2025 (12.2024)
磁力链接/BT种子简介
种子哈希:
3b3faa780c8e881b100cf6b1ce304e18ed36bb65
文件大小:
9.14G
已经下载:
540
次
下载速度:
极快
收录时间:
2025-04-30
最近下载:
2025-05-31
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:3B3FAA780C8E881B100CF6B1CE304E18ED36BB65
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
极品妈妈
大奶 日常
殺し屋
换爱
幼幼
周于希
琉璃 2020
深圳改装车展
defloration masha
woodman castibg
金瓶
dsvr16
不让
hazel moore
幼女
姬野兰
荣
小肚子
一见倾心高颜值反差婊悠悠
歌厅探花
猎奇资源极品狠货
포르쉐+사양조회
牛逼约炮大神 dsp 最强约操各路网红主播女大学生 射我逼里呀 ”
香港三级
长腿母狗的使用方法
open matte
.rar
ไม่สามารถไปเลือกตั้งสมาชิกสภาเทศบาลและนายกเทศมนตรี
gif出处
jur-384
文件列表
11. Probability - Bayesian Inference/12. A Practical Example of Bayesian Inference.mp4
146.0 MB
12. Probability - Distributions/15. A Practical Example of Probability Distributions.mp4
145.0 MB
16. Statistics - Practical Example Descriptive Statistics/01. Practical Example Descriptive Statistics.mp4
136.9 MB
05. The Field of Data Science - Popular Data Science Techniques/01. Techniques for Working with Traditional Data.mp4
112.4 MB
42. Part 6 Mathematics/11. Why is Linear Algebra Useful.mp4
92.8 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/01. Practical Example Linear Regression (Part 1).mp4
88.9 MB
03. The Field of Data Science - Connecting the Data Science Disciplines/01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp4
87.6 MB
06. The Field of Data Science - Popular Data Science Tools/01. Necessary Programming Languages and Software Used in Data Science.mp4
86.4 MB
10. Probability - Combinatorics/11. A Practical Example of Combinatorics.mp4
84.6 MB
05. The Field of Data Science - Popular Data Science Techniques/07. Techniques for Working with Traditional Methods.mp4
79.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/04. Business Case Preprocessing.mp4
78.0 MB
53. Deep Learning - Business Case Example/04. Business Case Preprocessing the Data.mp4
77.4 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.mp4
73.1 MB
05. The Field of Data Science - Popular Data Science Techniques/10. Types of Machine Learning.mp4
72.8 MB
19. Statistics - Practical Example Inferential Statistics/01. Practical Example Inferential Statistics.mp4
72.4 MB
05. The Field of Data Science - Popular Data Science Techniques/03. Techniques for Working with Big Data.mp4
65.1 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/01. Business Case Getting Acquainted with the Dataset.mp4
63.2 MB
58. Software Integration/02. What are Data Connectivity, APIs, and Endpoints.mp4
63.1 MB
08. The Field of Data Science - Debunking Common Misconceptions/01. Debunking Common Misconceptions.mp4
61.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/06. Creating a Data Provider.mp4
59.0 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/03. Checking the Content of the Data Set.mp4
56.6 MB
05. The Field of Data Science - Popular Data Science Techniques/05. Business Intelligence (BI) Techniques.mp4
55.5 MB
18. Statistics - Inferential Statistics Confidence Intervals/02. Confidence Intervals; Population Variance Known; Z-score.mp4
54.7 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.mp4
53.8 MB
53. Deep Learning - Business Case Example/01. Business Case Exploring the Dataset and Identifying Predictors.mp4
53.8 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/08. Practical Example Linear Regression (Part 5).mp4
52.9 MB
05. The Field of Data Science - Popular Data Science Techniques/09. Machine Learning (ML) Techniques.mp4
51.8 MB
02. The Field of Data Science - The Various Data Science Disciplines/04. Continuing with BI, ML, and AI.mp4
49.9 MB
04. The Field of Data Science - The Benefits of Each Discipline/01. The Reason Behind These Disciplines.mp4
49.0 MB
21. Statistics - Practical Example Hypothesis Testing/01. Practical Example Hypothesis Testing.mp4
48.1 MB
09. Part 2 Probability/02. Computing Expected Values.mp4
47.9 MB
02. The Field of Data Science - The Various Data Science Disciplines/07. A Breakdown of our Data Science Infographic.mp4
47.6 MB
62. Case Study - Loading the 'absenteeism_module'/03. Deploying the 'absenteeism_module' - Part II.mp4
47.3 MB
18. Statistics - Inferential Statistics Confidence Intervals/09. Confidence intervals. Two means. Dependent samples.mp4
47.2 MB
53. Deep Learning - Business Case Example/09. Business Case Setting an Early Stopping Mechanism.mp4
45.9 MB
64. Appendix - Additional Python Tools/05. List Comprehensions.mp4
45.3 MB
15. Statistics - Descriptive Statistics/01. Types of Data.mp4
45.3 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/07. Business Case Model Outline.mp4
44.6 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/02. The Naive Bayes Algorithm.mp4
44.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/07. Dropping a Column from a DataFrame in Python.mp4
43.2 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/08. Interpreting the Coefficients for Our Problem.mp4
43.1 MB
13. Probability - Probability in Other Fields/01. Probability in Finance.mp4
42.3 MB
63. Case Study - Analyzing the Predicted Outputs in Tableau/04. Analyzing Reasons vs Probability in Tableau.mp4
42.2 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.mp4
42.1 MB
07. The Field of Data Science - Careers in Data Science/01. Finding the Job - What to Expect and What to Look for.mp4
42.0 MB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/04. Basic NN Example (Part 4).mp4
41.9 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/06. Practical Example Linear Regression (Part 4).mp4
41.3 MB
20. Statistics - Hypothesis Testing/03. Rejection Region and Significance Level.mp4
40.6 MB
63. Case Study - Analyzing the Predicted Outputs in Tableau/02. Analyzing Age vs Probability in Tableau.mp4
40.6 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/09. MNIST Results and Testing.mp4
40.0 MB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.mp4
39.3 MB
09. Part 2 Probability/03. Frequency.mp4
39.2 MB
65. Appendix - pandas Fundamentals/11. Data Selection in pandas DataFrames.mp4
39.1 MB
20. Statistics - Hypothesis Testing/05. Test for the Mean. Population Variance Known.mp4
38.7 MB
05. The Field of Data Science - Popular Data Science Techniques/08. Real Life Examples of Traditional Methods.mp4
38.5 MB
40. ChatGPT for Data Science/05. First attempt at machine learning with ChatGPT.mp4
38.5 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/05. Splitting the Data for Training and Testing.mp4
37.8 MB
37. Advanced Statistical Methods - Cluster Analysis/02. Some Examples of Clusters.mp4
37.6 MB
12. Probability - Distributions/02. Types of Probability Distributions.mp4
37.3 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.mp4
37.3 MB
14. Part 3 Statistics/01. Population and Sample.mp4
36.8 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/04. MNIST Model Outline.mp4
36.4 MB
42. Part 6 Mathematics/10. Dot Product of Matrices.mp4
36.0 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/02. Adjusted R-Squared.mp4
35.9 MB
38. Advanced Statistical Methods - K-Means Clustering/02. A Simple Example of Clustering.mp4
35.8 MB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).mp4
35.7 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.mp4
35.5 MB
20. Statistics - Hypothesis Testing/07. p-value.mp4
35.4 MB
40. ChatGPT for Data Science/10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.mp4
35.3 MB
40. ChatGPT for Data Science/19. Using ChatGPT for ethical considerations.mp4
35.2 MB
40. ChatGPT for Data Science/14. Decoding comic book data Python Regular Expressions and ChatGPT.mp4
34.7 MB
64. Appendix - Additional Python Tools/04. Triple Nested For Loops.mp4
34.6 MB
20. Statistics - Hypothesis Testing/10. Test for the Mean. Dependent Samples.mp4
34.4 MB
52. Deep Learning - Classifying on the MNIST Dataset/06. MNIST Preprocess the Data - Shuffle and Batch.mp4
34.3 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/02. Creating the Targets for the Logistic Regression.mp4
34.0 MB
28. Python - Sequences/05. Dictionaries.mp4
34.0 MB
65. Appendix - pandas Fundamentals/12. pandas DataFrames - Indexing with .iloc[].mp4
33.8 MB
15. Statistics - Descriptive Statistics/02. Levels of Measurement.mp4
33.8 MB
20. Statistics - Hypothesis Testing/01. Null vs Alternative Hypothesis.mp4
33.5 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/02. Practical Example Linear Regression (Part 2).mp4
33.4 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/08. MNIST Learning.mp4
33.4 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.mp4
33.4 MB
13. Probability - Probability in Other Fields/02. Probability in Statistics.mp4
33.1 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.mp4
33.1 MB
52. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.mp4
32.5 MB
12. Probability - Distributions/06. Discrete Distributions The Binomial Distribution.mp4
32.1 MB
02. The Field of Data Science - The Various Data Science Disciplines/06. More Examples of Generative AI.mp4
32.0 MB
28. Python - Sequences/02. Using Methods.mp4
31.8 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/05. First Regression in Python.mp4
31.0 MB
53. Deep Learning - Business Case Example/08. Business Case Learning and Interpreting the Result.mp4
30.8 MB
09. Part 2 Probability/01. The Basic Probability Formula.mp4
30.8 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/08. How to Interpret the Regression Table.mp4
30.1 MB
40. ChatGPT for Data Science/04. Data Preprocessing with ChatGPT.mp4
30.1 MB
18. Statistics - Inferential Statistics Confidence Intervals/01. What are Confidence Intervals.mp4
30.0 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.mp4
29.9 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/10. Machine Learning with Naïve Bayes (First Attempt).mp4
29.5 MB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).mp4
29.4 MB
05. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Machine Learning (ML).mp4
29.1 MB
17. Statistics - Inferential Statistics Fundamentals/08. Estimators and Estimates.mp4
29.0 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.mp4
29.0 MB
15. Statistics - Descriptive Statistics/03. Categorical Variables - Visualization Techniques.mp4
28.8 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/03. Simple Linear Regression with sklearn.mp4
28.8 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/08. A3 Normality and Homoscedasticity.mp4
28.7 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.mp4
28.7 MB
46. Deep Learning - TensorFlow 2.0 Introduction/01. How to Install TensorFlow 2.0.mp4
28.7 MB
05. The Field of Data Science - Popular Data Science Techniques/11. Evolution and Latest Trends of Machine Learning (ML).mp4
28.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/03. The Importance of Working with a Balanced Dataset.mp4
28.6 MB
40. ChatGPT for Data Science/08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.mp4
28.5 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.mp4
28.3 MB
46. Deep Learning - TensorFlow 2.0 Introduction/06. Outlining the Model with TensorFlow 2.mp4
28.3 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/07. Creating a Summary Table with the Coefficients and Intercept.mp4
28.3 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/08. Business Case Optimization.mp4
28.2 MB
38. Advanced Statistical Methods - K-Means Clustering/06. How to Choose the Number of Clusters.mp4
28.2 MB
40. ChatGPT for Data Science/01. Traditional data science methods and the role of ChatGPT.mp4
27.4 MB
46. Deep Learning - TensorFlow 2.0 Introduction/07. Interpreting the Result and Extracting the Weights and Bias.mp4
27.2 MB
09. Part 2 Probability/04. Events and Their Complements.mp4
27.1 MB
64. Appendix - Additional Python Tools/01. Using the .format() Method.mp4
26.9 MB
65. Appendix - pandas Fundamentals/10. pandas DataFrames - Common Attributes.mp4
26.9 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.mp4
26.8 MB
65. Appendix - pandas Fundamentals/01. Introduction to pandas Series.mp4
26.2 MB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.mp4
26.1 MB
05. The Field of Data Science - Popular Data Science Techniques/06. Real Life Examples of Business Intelligence (BI).mp4
25.8 MB
02. The Field of Data Science - The Various Data Science Disciplines/05. Traditional AI vs. Generative AI.mp4
25.7 MB
58. Software Integration/03. Taking a Closer Look at APIs.mp4
25.7 MB
15. Statistics - Descriptive Statistics/11. Mean, median and mode.mp4
25.7 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.mp4
25.7 MB
20. Statistics - Hypothesis Testing/14. Test for the mean. Independent Samples (Part 2).mp4
25.6 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/06. Calculating the Accuracy of the Model.mp4
25.6 MB
65. Appendix - pandas Fundamentals/06. Using .unique() and .nunique().mp4
25.5 MB
59. Case Study - What's Next in the Course/03. Introducing the Data Set.mp4
25.4 MB
11. Probability - Bayesian Inference/04. Union of Sets.mp4
25.4 MB
12. Probability - Distributions/07. Discrete Distributions The Poisson Distribution.mp4
25.1 MB
36. Advanced Statistical Methods - Logistic Regression/03. Logistic vs Logit Function.mp4
24.9 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/03. Digging into a Deep Net.mp4
24.8 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/04. Python Packages Installation.mp4
24.8 MB
10. Probability - Combinatorics/06. Solving Combinations.mp4
24.8 MB
44. Deep Learning - Introduction to Neural Networks/11. Optimization Algorithm 1-Parameter Gradient Descent.mp4
24.7 MB
15. Statistics - Descriptive Statistics/15. Variance.mp4
24.7 MB
17. Statistics - Inferential Statistics Fundamentals/06. Central Limit Theorem.mp4
24.3 MB
18. Statistics - Inferential Statistics Confidence Intervals/08. Margin of Error.mp4
24.2 MB
28. Python - Sequences/01. Lists.mp4
24.2 MB
52. Deep Learning - Classifying on the MNIST Dataset/04. MNIST Preprocess the Data - Create a Validation Set and Scale It.mp4
24.0 MB
64. Appendix - Additional Python Tools/06. Anonymous (Lambda) Functions.mp4
23.9 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. Dealing with Categorical Data - Dummy Variables.mp4
23.7 MB
52. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.mp4
23.7 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/04. Non-Linearities and their Purpose.mp4
23.6 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/10. What is the OLS.mp4
23.6 MB
53. Deep Learning - Business Case Example/03. Business Case Balancing the Dataset.mp4
23.4 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp4
23.4 MB
42. Part 6 Mathematics/06. Addition and Subtraction of Matrices.mp4
23.2 MB
52. Deep Learning - Classifying on the MNIST Dataset/08. MNIST Outline the Model.mp4
23.1 MB
36. Advanced Statistical Methods - Logistic Regression/02. A Simple Example in Python.mp4
22.9 MB
40. ChatGPT for Data Science/06. Analyzing a client database with ChatGPT in Python.mp4
22.7 MB
40. ChatGPT for Data Science/09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.mp4
22.6 MB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.mp4
22.6 MB
11. Probability - Bayesian Inference/11. Bayes' Law.mp4
22.4 MB
12. Probability - Distributions/08. Characteristics of Continuous Distributions.mp4
22.3 MB
65. Appendix - pandas Fundamentals/05. Parameters and Arguments in pandas.mp4
22.2 MB
12. Probability - Distributions/10. Continuous Distributions The Standard Normal Distribution.mp4
22.1 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/12. Testing the Model on New Data.mp4
21.8 MB
65. Appendix - pandas Fundamentals/13. pandas DataFrames - Indexing with .loc[].mp4
21.7 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.mp4
21.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).mp4
21.5 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.mp4
21.4 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).mp4
21.4 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/07. Backpropagation.mp4
21.3 MB
10. Probability - Combinatorics/08. Solving Combinations with Separate Sample Spaces.mp4
21.3 MB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.mp4
21.2 MB
11. Probability - Bayesian Inference/10. The Multiplication Law.mp4
21.2 MB
29. Python - Iterations/02. While Loops and Incrementing.mp4
21.2 MB
15. Statistics - Descriptive Statistics/17. Standard Deviation and Coefficient of Variation.mp4
21.1 MB
11. Probability - Bayesian Inference/07. The Conditional Probability Formula.mp4
21.0 MB
12. Probability - Distributions/09. Continuous Distributions The Normal Distribution.mp4
21.0 MB
23. Python - Variables and Data Types/03. Python Strings.mp4
20.7 MB
20. Statistics - Hypothesis Testing/08. Test for the Mean. Population Variance Unknown.mp4
20.7 MB
15. Statistics - Descriptive Statistics/09. Cross Tables and Scatter Plots.mp4
20.7 MB
59. Case Study - What's Next in the Course/01. Game Plan for this Python, SQL, and Tableau Business Exercise.mp4
20.6 MB
62. Case Study - Loading the 'absenteeism_module'/02. Deploying the 'absenteeism_module' - Part I.mp4
20.6 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/02. Importing the Absenteeism Data in Python.mp4
20.5 MB
58. Software Integration/01. What are Data, Servers, Clients, Requests, and Responses.mp4
20.5 MB
12. Probability - Distributions/01. Fundamentals of Probability Distributions.mp4
20.4 MB
15. Statistics - Descriptive Statistics/21. Correlation Coefficient.mp4
20.3 MB
28. Python - Sequences/03. List Slicing.mp4
20.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.mp4
20.1 MB
25. Python - Other Python Operators/02. Logical and Identity Operators.mp4
19.9 MB
42. Part 6 Mathematics/04. Arrays in Python - A Convenient Way To Represent Matrices.mp4
19.9 MB
22. Part 4 Introduction to Python/06. Prerequisites for Coding in the Jupyter Notebooks.mp4
19.9 MB
18. Statistics - Inferential Statistics Confidence Intervals/04. Confidence Interval Clarifications.mp4
19.9 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/11. Machine Learning with Naïve Bayes – converting the problem to a binary one.mp4
19.8 MB
22. Part 4 Introduction to Python/04. Installing Python and Jupyter.mp4
19.7 MB
36. Advanced Statistical Methods - Logistic Regression/06. An Invaluable Coding Tip.mp4
19.7 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/07. Optimizing User Reviews Data Preprocessing & EDA.mp4
19.6 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/09. Business Case Interpretation.mp4
19.5 MB
39. Advanced Statistical Methods - Other Types of Clustering/03. Heatmaps.mp4
19.4 MB
29. Python - Iterations/06. How to Iterate over Dictionaries.mp4
19.3 MB
05. The Field of Data Science - Popular Data Science Techniques/02. Real Life Examples of Traditional Data.mp4
19.3 MB
15. Statistics - Descriptive Statistics/19. Covariance.mp4
19.3 MB
39. Advanced Statistical Methods - Other Types of Clustering/02. Dendrogram.mp4
19.2 MB
10. Probability - Combinatorics/05. Solving Variations without Repetition.mp4
19.1 MB
28. Python - Sequences/04. Tuples.mp4
19.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/04. Introduction to Terms with Multiple Meanings.mp4
18.9 MB
40. ChatGPT for Data Science/17. Algorithm recommendation recommendation engine for movies with ChatGPT.mp4
18.7 MB
65. Appendix - pandas Fundamentals/09. Introduction to pandas DataFrames - Part II.mp4
18.7 MB
15. Statistics - Descriptive Statistics/05. Numerical Variables - Frequency Distribution Table.mp4
18.6 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp4
18.5 MB
11. Probability - Bayesian Inference/01. Sets and Events.mp4
18.5 MB
58. Software Integration/04. Communication between Software Products through Text Files.mp4
18.4 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp4
18.4 MB
10. Probability - Combinatorics/02. Permutations and How to Use Them.mp4
18.4 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.mp4
18.2 MB
29. Python - Iterations/04. Conditional Statements and Loops.mp4
18.2 MB
40. ChatGPT for Data Science/16. Algorithm recommendation Movie Database Analysis with ChatGPT.mp4
18.1 MB
17. Statistics - Inferential Statistics Fundamentals/02. What is a Distribution.mp4
18.0 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/09. Basic NN Example with TF Model Output.mp4
17.9 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/08. Calculating the Adjusted R-Squared in sklearn.mp4
17.7 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/04. TensorFlow Intro.mp4
17.7 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/09. Standardizing only the Numerical Variables (Creating a Custom Scaler).mp4
17.7 MB
44. Deep Learning - Introduction to Neural Networks/12. Optimization Algorithm n-Parameter Gradient Descent.mp4
17.7 MB
46. Deep Learning - TensorFlow 2.0 Introduction/08. Customizing a TensorFlow 2 Model.mp4
17.6 MB
35. Advanced Statistical Methods - Practical Example Linear Regression/04. Practical Example Linear Regression (Part 3).mp4
17.5 MB
44. Deep Learning - Introduction to Neural Networks/06. The Linear model with Multiple Inputs and Multiple Outputs.mp4
17.4 MB
63. Case Study - Analyzing the Predicted Outputs in Tableau/06. Analyzing Transportation Expense vs Probability in Tableau.mp4
17.3 MB
10. Probability - Combinatorics/09. Combinatorics in Real-Life The Lottery.mp4
17.2 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. Making Predictions with the Linear Regression.mp4
17.1 MB
12. Probability - Distributions/14. Continuous Distributions The Logistic Distribution.mp4
17.0 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/08. Reg Ex for Analyzing Text Review Data.mp4
17.0 MB
54. Deep Learning - Conclusion/06. An Overview of non-NN Approaches.mp4
16.9 MB
29. Python - Iterations/03. Lists with the range() Function.mp4
16.8 MB
58. Software Integration/05. Software Integration - Explained.mp4
16.8 MB
12. Probability - Distributions/13. Continuous Distributions The Exponential Distribution.mp4
16.8 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/03. Tokenization and Vectorization.mp4
16.6 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/05. MNIST Loss and Optimization Algorithm.mp4
16.6 MB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/03. Basic NN Example (Part 3).mp4
16.4 MB
02. The Field of Data Science - The Various Data Science Disciplines/01. Data Science and Business Buzzwords Why are there so Many.mp4
16.3 MB
66. Bonus Lecture/assets/01. 365-Data-Science-Data-Science-Interview-Questions-Guide.pdf
16.3 MB
42. Part 6 Mathematics/05. What is a Tensor.mp4
16.3 MB
20. Statistics - Hypothesis Testing/12. Test for the mean. Independent Samples (Part 1).mp4
16.2 MB
46. Deep Learning - TensorFlow 2.0 Introduction/03. TensorFlow 1 vs TensorFlow 2.mp4
16.0 MB
20. Statistics - Hypothesis Testing/04. Type I Error and Type II Error.mp4
16.0 MB
46. Deep Learning - TensorFlow 2.0 Introduction/02. TensorFlow Outline and Comparison with Other Libraries.mp4
16.0 MB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/02. Basic NN Example (Part 2).mp4
16.0 MB
65. Appendix - pandas Fundamentals/07. Using .sort_values().mp4
16.0 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/06. Fitting the Model and Assessing its Accuracy.mp4
16.0 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.mp4
15.9 MB
40. ChatGPT for Data Science/07. Analyzing a client database with ChatGPT in Python – analyzing top products.mp4
15.9 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/04. Standardizing the Data.mp4
15.9 MB
12. Probability - Distributions/05. Discrete Distributions The Bernoulli Distribution.mp4
15.9 MB
40. ChatGPT for Data Science/13. Marvels comic book database Intro to Regular Expressions (RegEx).mp4
15.7 MB
11. Probability - Bayesian Inference/06. Dependence and Independence of Sets.mp4
15.6 MB
22. Part 4 Introduction to Python/01. Introduction to Programming.mp4
15.6 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/06. Loading the Dataset and Preprocessing.mp4
15.5 MB
40. ChatGPT for Data Science/18. Ethical principles in data and AI utilization.mp4
15.4 MB
18. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent Samples (Part 2).mp4
15.3 MB
02. The Field of Data Science - The Various Data Science Disciplines/03. Business Analytics, Data Analytics, and Data Science An Introduction.mp4
15.3 MB
36. Advanced Statistical Methods - Logistic Regression/07. Understanding Logistic Regression Tables.mp4
15.3 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/05. Overcome Imbalanced Data in Machine Learning.mp4
15.3 MB
37. Advanced Statistical Methods - Cluster Analysis/01. Introduction to Cluster Analysis.mp4
15.2 MB
40. ChatGPT for Data Science/12. Hypothesis testing with ChatGPT.mp4
15.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.mp4
15.0 MB
13. Probability - Probability in Other Fields/03. Probability in Data Science.mp4
14.9 MB
26. Python - Conditional Statements/03. The ELIF Statement.mp4
14.9 MB
42. Part 6 Mathematics/08. Transpose of a Matrix.mp4
14.9 MB
11. Probability - Bayesian Inference/08. The Law of Total Probability.mp4
14.9 MB
48. Deep Learning - Overfitting/02. Underfitting and Overfitting for Classification.mp4
14.7 MB
10. Probability - Combinatorics/04. Solving Variations with Repetition.mp4
14.6 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.mp4
14.5 MB
53. Deep Learning - Business Case Example/06. Business Case Load the Preprocessed Data.mp4
14.5 MB
10. Probability - Combinatorics/07. Symmetry of Combinations.mp4
14.4 MB
42. Part 6 Mathematics/03. Linear Algebra and Geometry.mp4
14.4 MB
18. Statistics - Inferential Statistics Confidence Intervals/06. Confidence Intervals; Population Variance Unknown; T-score.mp4
14.4 MB
18. Statistics - Inferential Statistics Confidence Intervals/05. Student's T Distribution.mp4
14.3 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/08. Basic NN Example with TF Loss Function and Gradient Descent.mp4
14.3 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.mp4
14.2 MB
17. Statistics - Inferential Statistics Fundamentals/07. Standard error.mp4
14.2 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/01. The Linear Regression Model.mp4
14.1 MB
54. Deep Learning - Conclusion/04. An overview of CNNs.mp4
14.0 MB
15. Statistics - Descriptive Statistics/13. Skewness.mp4
14.0 MB
65. Appendix - pandas Fundamentals/03. Working with Methods in Python - Part I.mp4
13.9 MB
17. Statistics - Inferential Statistics Fundamentals/03. The Normal Distribution.mp4
13.7 MB
44. Deep Learning - Introduction to Neural Networks/03. Types of Machine Learning.mp4
13.7 MB
05. The Field of Data Science - Popular Data Science Techniques/04. Real Life Examples of Big Data.mp4
13.7 MB
29. Python - Iterations/01. For Loops.mp4
13.6 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/01. Exploring the Problem with a Machine Learning Mindset.mp4
13.6 MB
42. Part 6 Mathematics/09. Dot Product.mp4
13.5 MB
64. Appendix - Additional Python Tools/02. Iterating Over Range Objects.mp4
13.2 MB
65. Appendix - pandas Fundamentals/08. Introduction to pandas DataFrames - Part I.mp4
13.1 MB
52. Deep Learning - Classifying on the MNIST Dataset/03. MNIST Importing the Relevant Packages and Loading the Data.mp4
12.8 MB
22. Part 4 Introduction to Python/02. Why Python.mp4
12.8 MB
64. Appendix - Additional Python Tools/03. Introduction to Nested For Loops.mp4
12.8 MB
10. Probability - Combinatorics/10. A Recap of Combinatorics.mp4
12.7 MB
51. Deep Learning - Preprocessing/03. Standardization.mp4
12.7 MB
40. ChatGPT for Data Science/assets/16. movies-metadata.zip
12.6 MB
18. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Independent Samples (Part 1).mp4
12.6 MB
42. Part 6 Mathematics/01. What is a Matrix.mp4
12.5 MB
43. Part 7 Deep Learning/01. What to Expect from this Part.mp4
12.3 MB
36. Advanced Statistical Methods - Logistic Regression/09. What do the Odds Actually Mean.mp4
11.9 MB
11. Probability - Bayesian Inference/02. Ways Sets Can Interact.mp4
11.9 MB
59. Case Study - What's Next in the Course/02. The Business Task.mp4
11.8 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/03. MNIST Relevant Packages.mp4
11.8 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/11. R-Squared.mp4
11.7 MB
02. The Field of Data Science - The Various Data Science Disciplines/02. What is the difference between Analysis and Analytics.mp4
11.7 MB
12. Probability - Distributions/12. Continuous Distributions The Chi-Squared Distribution.mp4
11.7 MB
38. Advanced Statistical Methods - K-Means Clustering/08. Pros and Cons of K-Means Clustering.mp4
11.7 MB
11. Probability - Bayesian Inference/09. The Additive Rule.mp4
11.6 MB
11. Probability - Bayesian Inference/03. Intersection of Sets.mp4
11.6 MB
38. Advanced Statistical Methods - K-Means Clustering/09. To Standardize or not to Standardize.mp4
11.4 MB
38. Advanced Statistical Methods - K-Means Clustering/01. K-Means Clustering.mp4
11.3 MB
48. Deep Learning - Overfitting/01. What is Overfitting.mp4
11.3 MB
01. Part 1 Introduction/01. A Practical Example What You Will Learn in This Course.mp4
11.3 MB
52. Deep Learning - Classifying on the MNIST Dataset/09. MNIST Select the Loss and the Optimizer.mp4
11.2 MB
11. Probability - Bayesian Inference/05. Mutually Exclusive Sets.mp4
11.1 MB
10. Probability - Combinatorics/03. Simple Operations with Factorials.mp4
11.0 MB
44. Deep Learning - Introduction to Neural Networks/01. Introduction to Neural Networks.mp4
11.0 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/01. Intro to the Case Study.mp4
10.9 MB
38. Advanced Statistical Methods - K-Means Clustering/04. Clustering Categorical Data.mp4
10.9 MB
12. Probability - Distributions/04. Discrete Distributions The Uniform Distribution.mp4
10.8 MB
48. Deep Learning - Overfitting/06. Early Stopping or When to Stop Training.mp4
10.8 MB
27. Python - Python Functions/07. Built-in Functions in Python.mp4
10.7 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.mp4
10.5 MB
27. Python - Python Functions/02. How to Create a Function with a Parameter.mp4
10.5 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/06. Using a Statistical Approach towards the Solution to the Exercise.mp4
10.4 MB
30. Python - Advanced Python Tools/04. Importing Modules in Python.mp4
10.4 MB
54. Deep Learning - Conclusion/01. Summary on What You've Learned.mp4
10.3 MB
44. Deep Learning - Introduction to Neural Networks/10. Common Objective Functions Cross-Entropy Loss.mp4
10.3 MB
37. Advanced Statistical Methods - Cluster Analysis/03. Difference between Classification and Clustering.mp4
10.1 MB
15. Statistics - Descriptive Statistics/07. The Histogram.mp4
10.0 MB
01. Part 1 Introduction/02. What Does the Course Cover.mp4
10.0 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/07. MNIST Batching and Early Stopping.mp4
9.9 MB
12. Probability - Distributions/03. Characteristics of Discrete Distributions.mp4
9.9 MB
48. Deep Learning - Overfitting/04. Training, Validation, and Test Datasets.mp4
9.9 MB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/01. Basic NN Example (Part 1).mp4
9.8 MB
12. Probability - Distributions/11. Continuous Distributions The Students' T Distribution.mp4
9.7 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/07. A2 No Endogeneity.mp4
9.7 MB
51. Deep Learning - Preprocessing/01. Preprocessing Introduction.mp4
9.7 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/02. What is a Deep Net.mp4
9.6 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/05. Actual Introduction to TensorFlow.mp4
9.5 MB
39. Advanced Statistical Methods - Other Types of Clustering/01. Types of Clustering.mp4
9.4 MB
65. Appendix - pandas Fundamentals/04. Working with Methods in Python - Part II.mp4
9.4 MB
23. Python - Variables and Data Types/01. Variables.mp4
9.4 MB
49. Deep Learning - Initialization/01. What is Initialization.mp4
9.3 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/06. Types of File Formats, supporting Tensors.mp4
9.3 MB
46. Deep Learning - TensorFlow 2.0 Introduction/05. Types of File Formats Supporting TensorFlow.mp4
9.3 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/05. Activation Functions.mp4
9.3 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/09. Decomposition of Variability.mp4
9.2 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/06. Activation Functions Softmax Activation.mp4
9.2 MB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/03. Selecting the Inputs for the Logistic Regression.mp4
9.1 MB
30. Python - Advanced Python Tools/01. Object Oriented Programming.mp4
9.1 MB
12. Probability - Distributions/assets/15. FIFA19-post.csv
9.1 MB
12. Probability - Distributions/assets/15. FIFA19.csv
9.1 MB
24. Python - Basic Python Syntax/01. Using Arithmetic Operators in Python.mp4
9.0 MB
17. Statistics - Inferential Statistics Fundamentals/04. The Standard Normal Distribution.mp4
9.0 MB
36. Advanced Statistical Methods - Logistic Regression/04. Building a Logistic Regression.mp4
9.0 MB
51. Deep Learning - Preprocessing/05. Binary and One-Hot Encoding.mp4
9.0 MB
42. Part 6 Mathematics/02. Scalars and Vectors.mp4
9.0 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp4
8.9 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/01. What is sklearn and How is it Different from Other Packages.mp4
8.9 MB
48. Deep Learning - Overfitting/03. What is Validation.mp4
8.8 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/07. Multiple Linear Regression with sklearn.mp4
8.7 MB
53. Deep Learning - Business Case Example/11. Business Case Testing the Model.mp4
8.6 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/08. Backpropagation Picture.mp4
8.5 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/02. MNIST How to Tackle the MNIST.mp4
8.4 MB
22. Part 4 Introduction to Python/03. Why Jupyter.mp4
8.4 MB
44. Deep Learning - Introduction to Neural Networks/04. The Linear Model (Linear Algebraic Version).mp4
8.4 MB
52. Deep Learning - Classifying on the MNIST Dataset/02. MNIST How to Tackle the MNIST.mp4
8.3 MB
44. Deep Learning - Introduction to Neural Networks/05. The Linear Model with Multiple Inputs.mp4
8.3 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/09. A4 No Autocorrelation.mp4
8.3 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/01. Stochastic Gradient Descent.mp4
8.2 MB
44. Deep Learning - Introduction to Neural Networks/07. Graphical Representation of Simple Neural Networks.mp4
8.2 MB
44. Deep Learning - Introduction to Neural Networks/02. Training the Model.mp4
8.1 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/10. A5 No Multicollinearity.mp4
8.0 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/29. Absenteeism-Exercise-Preprocessing-LECTURES.ipynb
8.0 MB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.mp4
7.8 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/07. Using Seaborn for Graphs.mp4
7.7 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/04. Test for Significance of the Model (F-Test).mp4
7.5 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/07. Adam (Adaptive Moment Estimation).mp4
7.5 MB
54. Deep Learning - Conclusion/05. An Overview of RNNs.mp4
7.3 MB
02. The Field of Data Science - The Various Data Science Disciplines/assets/04. 365-DataScience.png
7.3 MB
02. The Field of Data Science - The Various Data Science Disciplines/assets/07. 365-DataScience.png
7.3 MB
18. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent Samples (Part 3).mp4
7.2 MB
26. Python - Conditional Statements/01. The IF Statement.mp4
7.0 MB
23. Python - Variables and Data Types/02. Numbers and Boolean Values in Python.mp4
6.9 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/04. Imbalanced Data Sets.mp4
6.9 MB
27. Python - Python Functions/03. Defining a Function in Python - Part II.mp4
6.8 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with P-values.mp4
6.8 MB
48. Deep Learning - Overfitting/05. N-Fold Cross Validation.mp4
6.5 MB
44. Deep Learning - Introduction to Neural Networks/08. What is the Objective Function.mp4
6.5 MB
22. Part 4 Introduction to Python/05. Understanding Jupyter's Interface - the Notebook Dashboard.mp4
6.4 MB
27. Python - Python Functions/05. Conditional Statements and Functions.mp4
6.3 MB
26. Python - Conditional Statements/02. The ELSE Statement.mp4
6.3 MB
10. Probability - Combinatorics/01. Fundamentals of Combinatorics.mp4
6.2 MB
36. Advanced Statistical Methods - Logistic Regression/01. Introduction to Logistic Regression.mp4
6.2 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.mp4
6.1 MB
60. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.mp4
6.1 MB
42. Part 6 Mathematics/07. Errors when Adding Matrices.mp4
6.1 MB
49. Deep Learning - Initialization/02. Types of Simple Initializations.mp4
6.0 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/01. Multiple Linear Regression.mp4
6.0 MB
44. Deep Learning - Introduction to Neural Networks/09. Common Objective Functions L2-norm Loss.mp4
5.7 MB
49. Deep Learning - Initialization/03. State-of-the-Art Method - (Xavier) Glorot Initialization.mp4
5.7 MB
51. Deep Learning - Preprocessing/04. Preprocessing Categorical Data.mp4
5.7 MB
40. ChatGPT for Data Science/03. How ChatGPT can boost your productivity.mp4
5.6 MB
34. Advanced Statistical Methods - Linear Regression with sklearn/02. How are we Going to Approach this Section.mp4
5.6 MB
37. Advanced Statistical Methods - Cluster Analysis/04. Math Prerequisites.mp4
5.5 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/05. OLS Assumptions.mp4
5.5 MB
40. ChatGPT for Data Science/02. How to install ChatGPT.mp4
5.5 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/03. Momentum.mp4
5.4 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/01. What is a Layer.mp4
5.4 MB
30. Python - Advanced Python Tools/03. What is the Standard Library.mp4
5.3 MB
55. Appendix Deep Learning - TensorFlow 1 Introduction/02. How to Install TensorFlow 1.mp4
5.2 MB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/01. MNIST What is the MNIST Dataset.mp4
5.0 MB
54. Deep Learning - Conclusion/02. What's Further out there in terms of Machine Learning.mp4
5.0 MB
46. Deep Learning - TensorFlow 2.0 Introduction/04. A Note on TensorFlow 2 Syntax.mp4
4.9 MB
52. Deep Learning - Classifying on the MNIST Dataset/01. MNIST The Dataset.mp4
4.8 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.mp4
4.6 MB
29. Python - Iterations/05. Conditional Statements, Functions, and Loops.mp4
4.5 MB
26. Python - Conditional Statements/04. A Note on Boolean Values.mp4
4.4 MB
25. Python - Other Python Operators/01. Comparison Operators.mp4
4.4 MB
57. Appendix Deep Learning - TensorFlow 1 Business Case/02. Business Case Outlining the Solution.mp4
4.4 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/02. Correlation vs Regression.mp4
4.0 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/02. Problems with Gradient Descent.mp4
3.8 MB
31. Part 5 Advanced Statistical Methods in Python/01. Introduction to Regression Analysis.mp4
3.8 MB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/06. A1 Linearity.mp4
3.7 MB
40. ChatGPT for Data Science/assets/13. Marvel-Comics.zip
3.7 MB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.mp4
3.7 MB
51. Deep Learning - Preprocessing/02. Types of Basic Preprocessing.mp4
3.4 MB
27. Python - Python Functions/04. How to Use a Function within a Function.mp4
3.4 MB
27. Python - Python Functions/01. Defining a Function in Python.mp4
3.4 MB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/05. Learning Rate Schedules Visualized.mp4
3.3 MB
17. Statistics - Inferential Statistics Fundamentals/01. Introduction.mp4
3.2 MB
53. Deep Learning - Business Case Example/02. Business Case Outlining the Solution.mp4
3.2 MB
27. Python - Python Functions/06. Functions Containing a Few Arguments.mp4
2.9 MB
24. Python - Basic Python Syntax/07. Structuring with Indentation.mp4
2.9 MB
24. Python - Basic Python Syntax/02. The Double Equality Sign.mp4
2.8 MB
24. Python - Basic Python Syntax/04. Add Comments.mp4
2.5 MB
24. Python - Basic Python Syntax/06. Indexing Elements.mp4
2.5 MB
40. ChatGPT for Data Science/assets/16. ratings-small.csv
2.4 MB
32. Advanced Statistical Methods - Linear Regression with StatsModels/03. Geometrical Representation of the Linear Regression Model.mp4
2.4 MB
22. Part 4 Introduction to Python/assets/01. Introduction-to-Python-Course-Notes.pdf
2.3 MB
23. Python - Variables and Data Types/assets/01. Introduction-to-Python-Course-Notes.pdf
2.3 MB
30. Python - Advanced Python Tools/02. Modules and Packages.mp4
2.2 MB
24. Python - Basic Python Syntax/03. How to Reassign Values.mp4
2.0 MB
19. Statistics - Practical Example Inferential Statistics/assets/02. 3.17.Practical-example.Confidence-intervals-exercise-solution.xlsx
1.9 MB
19. Statistics - Practical Example Inferential Statistics/assets/01. 3.17.Practical-example.Confidence-intervals-lesson.xlsx
1.8 MB
19. Statistics - Practical Example Inferential Statistics/assets/02. 3.17.Practical-example.Confidence-intervals-exercise.xlsx
1.8 MB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/assets/12. 365-User-Reviews-Naive-Bayes-Sentiment-Analysis.ipynb
1.8 MB
24. Python - Basic Python Syntax/05. Understanding Line Continuation.mp4
1.3 MB
20. Statistics - Hypothesis Testing/assets/07. Online-p-value-calculator.pdf
1.2 MB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/assets/02. Course-Notes-Section-6.pdf
958.9 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/assets/01. Course-Notes-Section-6.pdf
958.9 kB
11. Probability - Bayesian Inference/assets/12. CDS-2017-2018-Hamilton.pdf
865.6 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/08. sklearn-Linear-Regression-Practical-Example-Part-5-with-comments.ipynb
728.1 kB
53. Deep Learning - Business Case Example/assets/01. Audiobooks-data.csv
727.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/12. Audiobooks-data.csv
727.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/03. Audiobooks-data.csv
727.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/04. Audiobooks-data.csv
727.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/01. Audiobooks-data.csv
727.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/05. Audiobooks-data.csv
727.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/11. Audiobooks-data.csv
727.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/08. sklearn-Linear-Regression-Practical-Example-Part-5.ipynb
715.1 kB
20. Statistics - Hypothesis Testing/assets/03. Course-notes-hypothesis-testing.pdf
672.2 kB
20. Statistics - Hypothesis Testing/assets/01. Course-notes-hypothesis-testing.pdf
672.2 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/01. Shortcuts-for-Jupyter.pdf
634.0 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/01. Shortcuts-for-Jupyter.pdf
634.0 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/05. Shortcuts-for-Jupyter.pdf
634.0 kB
44. Deep Learning - Introduction to Neural Networks/assets/02. Course-Notes-Section-2.pdf
592.0 kB
44. Deep Learning - Introduction to Neural Networks/assets/01. Course-Notes-Section-2.pdf
592.0 kB
14. Part 3 Statistics/assets/01. Course-notes-descriptive-statistics.pdf
493.8 kB
15. Statistics - Descriptive Statistics/assets/01. Course-notes-descriptive-statistics.pdf
493.8 kB
12. Probability - Distributions/assets/01. Course-Notes-Probability-Distributions.pdf
475.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/06. sklearn-Linear-Regression-Practical-Example-Part-4-with-comments.ipynb
417.4 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/06. sklearn-Linear-Regression-Practical-Example-Part-4.ipynb
406.8 kB
11. Probability - Bayesian Inference/assets/01. Course-Notes-Bayesian-Inference.pdf
395.3 kB
17. Statistics - Inferential Statistics Fundamentals/assets/02. Course-notes-inferential-statistics.pdf
391.5 kB
17. Statistics - Inferential Statistics Fundamentals/assets/01. Course-notes-inferential-statistics.pdf
391.5 kB
09. Part 2 Probability/assets/01. Course-Notes-Basic-Probability.pdf
380.0 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/05. sklearn-Dummies-and-VIF-Exercise-Solution.ipynb
379.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/04. sklearn-Linear-Regression-Practical-Example-Part-3-with-comments.ipynb
359.9 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/05. sklearn-Dummies-and-VIF-Exercise.ipynb
352.9 kB
12. Probability - Distributions/assets/08. Solving-Integrals.pdf
352.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/04. sklearn-Linear-Regression-Practical-Example-Part-3.ipynb
351.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/02. sklearn-Linear-Regression-Practical-Example-Part-2-with-comments.ipynb
343.7 kB
36. Advanced Statistical Methods - Logistic Regression/assets/01. Course-Notes-Logistic-Regression.pdf
343.2 kB
36. Advanced Statistical Methods - Logistic Regression/assets/02. Course-Notes-Logistic-Regression.pdf
343.2 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/02. sklearn-Linear-Regression-Practical-Example-Part-2.ipynb
336.6 kB
02. The Field of Data Science - The Various Data Science Disciplines/assets/04. 365-DataScience-Diagram.pdf
330.8 kB
02. The Field of Data Science - The Various Data Science Disciplines/assets/03. 365-DataScience-Diagram.pdf
330.8 kB
13. Probability - Probability in Other Fields/assets/03. Probability-Cheat-Sheet.pdf
328.0 kB
31. Part 5 Advanced Statistical Methods in Python/assets/01. Course-notes-regression-analysis.pdf
319.7 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/01. Course-notes-regression-analysis.pdf
319.7 kB
01. Part 1 Introduction/assets/03. FAQ-The-Data-Science-Course.pdf
313.4 kB
15. Statistics - Descriptive Statistics/assets/04. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
15. Statistics - Descriptive Statistics/assets/08. Statistics-PDF-with-Excel-Solutions-that-dont-visualize-properly.pdf
296.1 kB
40. ChatGPT for Data Science/assets/10. Properties-analysis.ipynb
293.4 kB
10. Probability - Combinatorics/assets/11. Additional-Exercises-Combinatorics-Solutions.pdf
251.6 kB
10. Probability - Combinatorics/assets/01. Course-Notes-Combinatorics.pdf
231.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/06. 1.04.Real-life-example.csv
225.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/02. 1.04.Real-life-example.csv
225.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/01. 1.04.Real-life-example.csv
225.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/05. 1.04.Real-life-example.csv
225.1 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/08. 1.04.Real-life-example.csv
225.1 kB
37. Advanced Statistical Methods - Cluster Analysis/assets/02. Course-Notes-Cluster-Analysis.pdf
213.7 kB
37. Advanced Statistical Methods - Cluster Analysis/assets/01. Course-Notes-Cluster-Analysis.pdf
213.7 kB
10. Probability - Combinatorics/assets/06. Combinations-With-Repetition.pdf
212.4 kB
13. Probability - Probability in Other Fields/assets/01. Probability-in-Finance-Solutions.pdf
188.9 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/assets/09. Backpropagation-a-peek-into-the-Mathematics-of-Optimization.pdf
186.8 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/01. sklearn-Linear-Regression-Practical-Example-Part-1-with-comments.ipynb
175.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/assets/01. sklearn-Linear-Regression-Practical-Example-Part-1.ipynb
170.9 kB
65. Appendix - pandas Fundamentals/assets/13. Sales-products.csv
155.9 kB
65. Appendix - pandas Fundamentals/assets/01. Sales-products.csv
155.9 kB
16. Statistics - Practical Example Descriptive Statistics/assets/01. 2.13.Practical-example.Descriptive-statistics-lesson.xlsx
150.0 kB
16. Statistics - Practical Example Descriptive Statistics/assets/02. 2.13.Practical-example.Descriptive-statistics-exercise-solution.xlsx
149.9 kB
12. Probability - Distributions/assets/07. Poisson-Expected-Value-and-Variance.pdf
149.5 kB
12. Probability - Distributions/assets/09. Normal-Distribution-Exp-and-Var.pdf
147.5 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/01. data-preprocessing-homework.pdf
137.7 kB
16. Statistics - Practical Example Descriptive Statistics/assets/02. 2.13.Practical-example.Descriptive-statistics-exercise.xlsx
123.2 kB
65. Appendix - pandas Fundamentals/assets/13. pandas-Fundamentals-Solutions.ipynb
121.2 kB
65. Appendix - pandas Fundamentals/assets/01. pandas-Fundamentals-Solutions.ipynb
121.2 kB
65. Appendix - pandas Fundamentals/assets/13. Lending-company.csv
115.1 kB
65. Appendix - pandas Fundamentals/assets/01. Lending-company.csv
115.1 kB
36. Advanced Statistical Methods - Logistic Regression/assets/16. Testing-the-Model-Solution.ipynb
113.8 kB
13. Probability - Probability in Other Fields/assets/01. Probability-in-Finance-Homework.pdf
113.3 kB
10. Probability - Combinatorics/assets/11. Additional-Exercises-Combinatorics.pdf
109.1 kB
10. Probability - Combinatorics/assets/07. Symmetry-Explained.pdf
87.1 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/09. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
86.5 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-3.d.Solution.ipynb
86.2 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/09. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
85.7 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/09. TensorFlow-Minimal-example-All-exercises.ipynb
85.6 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/08. TensorFlow-Minimal-example-complete-with-comments.ipynb
84.3 kB
36. Advanced Statistical Methods - Logistic Regression/assets/13. Calculating-the-Accuracy-of-the-Model-Solution.ipynb
83.2 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/09. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
79.4 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/08. TensorFlow-Minimal-example-complete.ipynb
78.7 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/07. TensorFlow-Minimal-example-Part3.ipynb
78.4 kB
40. ChatGPT for Data Science/assets/19. interactions.csv
75.0 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-3.c.Solution.ipynb
71.8 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-1-Solution.ipynb
70.7 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-5-Solution.ipynb
70.5 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-3.a.Solution.ipynb
69.5 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-3.b.Solution.ipynb
69.3 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-4-Solution.ipynb
68.1 kB
62. Case Study - Loading the 'absenteeism_module'/assets/01. Absenteeism-Exercise-Integration.ipynb
63.8 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-6-Solution.ipynb
63.2 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-6.ipynb
63.2 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-Exercise-2-Solution.ipynb
62.9 kB
40. ChatGPT for Data Science/assets/08. Furniture-store-data-analysis.ipynb
53.6 kB
21. Statistics - Practical Example Hypothesis Testing/assets/01. 4.10.Hypothesis-testing-section-practical-example.xlsx
53.1 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-2-3-Solution.ipynb
51.2 kB
21. Statistics - Practical Example Hypothesis Testing/assets/02. 4.10.Hypothesis-testing-section-practical-example-exercise-solution.xlsx
45.3 kB
21. Statistics - Practical Example Hypothesis Testing/assets/02. 4.10.Hypothesis-testing-section-practical-example-exercise.xlsx
44.7 kB
44. Deep Learning - Introduction to Neural Networks/assets/11. GD-function-example.xlsx
43.4 kB
15. Statistics - Descriptive Statistics/assets/04. 2.3.Categorical-variables.Visualization-techniques-exercise-solution.xlsx
42.1 kB
15. Statistics - Descriptive Statistics/assets/10. 2.6.Cross-table-and-scatter-plot-exercise-solution.xlsx
41.4 kB
40. ChatGPT for Data Science/assets/06. orders.csv
38.6 kB
15. Statistics - Descriptive Statistics/assets/13. 2.8.Skewness-lesson.xlsx
35.5 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/01. Absenteeism-data.csv
32.8 kB
65. Appendix - pandas Fundamentals/assets/13. pandas-Fundamentals-Exercises.ipynb
31.7 kB
65. Appendix - pandas Fundamentals/assets/01. pandas-Fundamentals-Exercises.ipynb
31.7 kB
40. ChatGPT for Data Science/assets/19. posts.csv
31.5 kB
15. Statistics - Descriptive Statistics/assets/03. 2.3.Categorical-variables.Visualization-techniques-lesson.xlsx
31.5 kB
11. Probability - Bayesian Inference/assets/12. Bayesian-Homework-Solutions.pdf
31.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/16. sklearn-Making-Predictions-with-the-Standardized-Coefficients.ipynb
30.5 kB
15. Statistics - Descriptive Statistics/assets/20. 2.11.Covariance-exercise-solution.xlsx
30.2 kB
40. ChatGPT for Data Science/assets/14. Marvel-Comics-Reg-Ex.ipynb
30.2 kB
15. Statistics - Descriptive Statistics/assets/22. 2.12.Correlation-exercise-solution.xlsx
30.2 kB
15. Statistics - Descriptive Statistics/assets/22. 2.12.Correlation-exercise.xlsx
30.0 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/assets/01. Absenteeism-preprocessed.csv
29.8 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/01. df-preprocessed.csv
29.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/04. sklearn-Simple-Linear-Regression-with-comments.ipynb
29.0 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/09. TensorFlow-Minimal-example-Exercise-1-Solution.ipynb
28.6 kB
11. Probability - Bayesian Inference/assets/12. Bayesian-Homework.pdf
27.9 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-4-Solution.ipynb
27.6 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-3-Solution.ipynb
27.4 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/06. Simple-Linear-Regression-with-sklearn-Exercise-Solution.ipynb
27.2 kB
15. Statistics - Descriptive Statistics/assets/09. 2.6.Cross-table-and-scatter-plot.xlsx
26.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/04. sklearn-Simple-Linear-Regression.ipynb
26.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/02. 3.9.The-z-table.xlsx
26.2 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/03. 3.9.The-z-table.xlsx
26.2 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-2-1-Solution.ipynb
26.2 kB
64. Appendix - Additional Python Tools/assets/01. Additional-Python-Tools-Solutions.ipynb
26.1 kB
64. Appendix - Additional Python Tools/assets/06. Additional-Python-Tools-Solutions.ipynb
26.1 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-2-2-Solution.ipynb
26.1 kB
15. Statistics - Descriptive Statistics/assets/19. 2.11.Covariance-lesson.xlsx
25.5 kB
17. Statistics - Inferential Statistics Fundamentals/assets/05. 3.4.Standard-normal-distribution-exercise-solution.xlsx
24.6 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-1-Solution.ipynb
24.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/16. sklearn-Making-Predictions-with-the-Standardized-Coefficients-with-comments.ipynb
22.6 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-Exercise-2-4-Solution.ipynb
22.3 kB
01. Part 1 Introduction/03. Download All Resources and Important FAQ.html
21.9 kB
65. Appendix - pandas Fundamentals/assets/13. pandas-Fundamentals-Lectures.ipynb
21.8 kB
65. Appendix - pandas Fundamentals/assets/01. pandas-Fundamentals-Lectures.ipynb
21.8 kB
12. Probability - Distributions/15. A Practical Example of Probability Distributions.vtt
21.6 kB
16. Statistics - Practical Example Descriptive Statistics/01. Practical Example Descriptive Statistics.vtt
21.5 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
21.1 kB
40. ChatGPT for Data Science/assets/17. Movies-Data-Base-Recommendation-Engine.ipynb
20.9 kB
14. Part 3 Statistics/assets/01. Statistics-Glossary.xlsx
20.8 kB
15. Statistics - Descriptive Statistics/assets/20. 2.11.Covariance-exercise.xlsx
20.7 kB
12. Probability - Distributions/assets/15. Daily-Views-post.xlsx
20.7 kB
11. Probability - Bayesian Inference/12. A Practical Example of Bayesian Inference.vtt
20.6 kB
15. Statistics - Descriptive Statistics/assets/01. Glossary.xlsx
20.4 kB
15. Statistics - Descriptive Statistics/assets/14. 2.8.Skewness-exercise-solution.xlsx
20.2 kB
53. Deep Learning - Business Case Example/assets/08. TensorFlow-Audiobooks-Machine-Learning-Part2-with-comments.ipynb
20.2 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/assets/12. user-courses-review-test-set.csv
20.1 kB
36. Advanced Statistical Methods - Logistic Regression/assets/11. Bank-data.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/assets/13. Bank-data.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/assets/16. Bank-data.csv
20.0 kB
36. Advanced Statistical Methods - Logistic Regression/assets/08. Bank-data.csv
20.0 kB
17. Statistics - Inferential Statistics Fundamentals/assets/02. 3.2.What-is-a-distribution-lesson.xlsx
19.9 kB
15. Statistics - Descriptive Statistics/assets/07. 2.5.The-Histogram-lesson.xlsx
19.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/12. Multiple-Linear-Regression-with-Dummies-Exercise-Solution.ipynb
18.4 kB
39. Advanced Statistical Methods - Other Types of Clustering/assets/03. Heatmaps-with-comments.ipynb
18.1 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb
18.1 kB
15. Statistics - Descriptive Statistics/assets/08. 2.5.The-Histogram-exercise-solution.xlsx
17.5 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
17.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/15. SKLEAR-1.IPY
17.2 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. TensorFlow-MNIST-All-Exercises.ipynb
17.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/12. sklearn-Multiple-Linear-Regression-Summary-Table-with-comments.ipynb
17.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/17. sklearn-Feature-Scaling-Exercise-Solution.ipynb
16.7 kB
15. Statistics - Descriptive Statistics/assets/10. 2.6.Cross-table-and-scatter-plot-exercise.xlsx
16.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/07. 3.11.The-t-table.xlsx
16.2 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/06. 3.11.The-t-table.xlsx
16.2 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
16.2 kB
12. Probability - Distributions/assets/15. Customers-Membership-post.xlsx
16.0 kB
15. Statistics - Descriptive Statistics/assets/08. 2.5.The-Histogram-exercise.xlsx
15.9 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/10. TensorFlow-MNIST-Exercises-All.ipynb
15.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/13. sklearn-Multiple-Linear-Regression-Exercise-Solution.ipynb
15.8 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 2.TensorFlow-MNIST-Depth-Solution.ipynb
15.7 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 3.TensorFlow-MNIST-Width-and-Depth-Solution.ipynb
15.7 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/15. Species-Segmentation-with-Cluster-Analysis-Part-2-Solution.ipynb
15.7 kB
15. Statistics - Descriptive Statistics/assets/04. 2.3.Categorical-variables.Visualization-techniques-exercise.xlsx
15.6 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 9.TensorFlow-MNIST-Learning-rate-Part-2-Solution.ipynb
15.6 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
15.5 kB
10. Probability - Combinatorics/11. A Practical Example of Combinatorics.vtt
15.5 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
15.5 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
15.5 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. TensorFlow-MNIST-around-98-percent-accuracy.ipynb
15.4 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/15. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-2.ipynb
15.3 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 2.TensorFlow-MNIST-Depth-Solution.ipynb
15.2 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/01. Practical Example Linear Regression (Part 1).vtt
15.2 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 1.TensorFlow-MNIST-Width-Solution.ipynb
15.2 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
15.1 kB
20. Statistics - Hypothesis Testing/assets/08. 4.6.Test-for-the-mean.Population-variance-unknown-lesson.xlsx
14.9 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/12. TensorFlow-MNIST-complete-with-comments.ipynb
14.9 kB
20. Statistics - Hypothesis Testing/assets/11. 4.7.Test-for-the-mean.Dependent-samples-exercise-solution.xlsx
14.7 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/11. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/12. TensorFlow-Audiobooks-Machine-learning-Homework.ipynb
14.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 4.TensorFlow-MNIST-Activation-functions-Part-1-Solution.ipynb
14.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 6.TensorFlow-MNIST-Batch-size-Part-1-Solution.ipynb
14.6 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise-solution.xlsx
14.6 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 7.TensorFlow-MNIST-Batch-size-Part-2-Solution.ipynb
14.5 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 8.TensorFlow-MNIST-Learning-rate-Part-1-Solution.ipynb
14.4 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 1.TensorFlow-MNIST-Width-Solution.ipynb
14.3 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 0.TensorFlow-MNIST-take-note-of-time-Solution.ipynb
14.3 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/10. TensorFlow-Minimal-Example-All-Exercises.ipynb
14.3 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/11. 5.TensorFlow-MNIST-Activation-functions-Part-2-Solution.ipynb
14.3 kB
19. Statistics - Practical Example Inferential Statistics/01. Practical Example Inferential Statistics.vtt
14.2 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/10. 3.13.Confidence-intervals.Two-means.Dependent-samples-exercise.xlsx
14.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/12. sklearn-Multiple-Linear-Regression-Summary-Table.ipynb
14.0 kB
53. Deep Learning - Business Case Example/04. Business Case Preprocessing the Data.vtt
13.9 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/04. Business Case Preprocessing.vtt
13.9 kB
65. Appendix - pandas Fundamentals/assets/13. Location.csv
13.8 kB
65. Appendix - pandas Fundamentals/assets/01. Location.csv
13.8 kB
64. Appendix - Additional Python Tools/assets/06. Additional-Python-Tools-Lectures.ipynb
13.8 kB
64. Appendix - Additional Python Tools/assets/01. Additional-Python-Tools-Lectures.ipynb
13.8 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/03. Multiple-Linear-Regression-Exercise-Solution.ipynb
13.7 kB
15. Statistics - Descriptive Statistics/assets/06. 2.4.Numerical-variables.Frequency-distribution-table-exercise-solution.xlsx
13.5 kB
02. The Field of Data Science - The Various Data Science Disciplines/04. Continuing with BI, ML, and AI.vtt
13.4 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/09. 12.9.TensorFlow-MNIST-with-comments.ipynb
13.3 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/10. sklearn-Feature-Selection-with-F-regression-with-comments.ipynb
13.3 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/05. Minimal-example-All-Exercises.ipynb
13.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/14. SKLEAR-1.IPY
13.2 kB
64. Appendix - Additional Python Tools/05. List Comprehensions.vtt
13.1 kB
20. Statistics - Hypothesis Testing/assets/11. 4.7.Test-for-the-mean.Dependent-samples-exercise.xlsx
13.1 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/08. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/09. TensorFlow-Audiobooks-optimizing-the-algorithm-with-comments.ipynb
13.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/11. sklearn-How-to-properly-include-p-values.ipynb
13.0 kB
64. Appendix - Additional Python Tools/01. Using the .format() Method.vtt
13.0 kB
20. Statistics - Hypothesis Testing/assets/09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise-solution.xlsx
12.9 kB
15. Statistics - Descriptive Statistics/assets/18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise-solution.xlsx
12.9 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/10. TensorFlow-MNIST-Part6-with-comments.ipynb
12.8 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/09. 5.6.TensorFlow-Minimal-example-complete.ipynb
12.4 kB
17. Statistics - Inferential Statistics Fundamentals/assets/05. 3.4.Standard-normal-distribution-exercise.xlsx
12.3 kB
53. Deep Learning - Business Case Example/assets/11. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
53. Deep Learning - Business Case Example/assets/12. TensorFlow-Audiobooks-Machine-Learning-with-comments.ipynb
12.2 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/06. Practical Example Linear Regression (Part 4).vtt
12.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/14. sklearn-Feature-Selection-through-Feature-Scaling-Standardization-Part-1.ipynb
12.0 kB
36. Advanced Statistical Methods - Logistic Regression/assets/12. Accuracy-with-comments.ipynb
12.0 kB
15. Statistics - Descriptive Statistics/assets/18. 2.10.Standard-deviation-and-coefficient-of-variation-exercise.xlsx
11.9 kB
42. Part 6 Mathematics/11. Why is Linear Algebra Useful.vtt
11.8 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/08. 12.8.TensorFlow-MNIST-with-comments-Part-6.ipynb
11.8 kB
05. The Field of Data Science - Popular Data Science Techniques/07. Techniques for Working with Traditional Methods.vtt
11.8 kB
15. Statistics - Descriptive Statistics/assets/05. 2.4.Numerical-variables.Frequency-distribution-table-lesson.xlsx
11.7 kB
64. Appendix - Additional Python Tools/assets/06. Additional-Python-Tools-Exercises.ipynb
11.7 kB
64. Appendix - Additional Python Tools/assets/01. Additional-Python-Tools-Exercises.ipynb
11.7 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/04. Minimal-example-Part-4-Complete.ipynb
11.7 kB
20. Statistics - Hypothesis Testing/assets/15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2-solution.xlsx
11.7 kB
15. Statistics - Descriptive Statistics/assets/12. 2.7.Mean-median-and-mode-exercise-solution.xlsx
11.6 kB
20. Statistics - Hypothesis Testing/assets/09. 4.6.Test-for-the-mean.Population-variance-unknown-exercise.xlsx
11.6 kB
20. Statistics - Hypothesis Testing/assets/13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise-solution.xlsx
11.5 kB
20. Statistics - Hypothesis Testing/assets/06. 4.4.Test-for-the-mean.Population-variance-known-exercise-solution.xlsx
11.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/02. 3.9.Population-variance-known-z-score-lesson.xlsx
11.5 kB
53. Deep Learning - Business Case Example/assets/04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/04. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/12. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/11. TensorFlow-Audiobooks-Preprocessing-with-comments.ipynb
11.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/03. 3.9.Population-variance-known-z-score-exercise-solution.xlsx
11.4 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/07. 3.11.Population-variance-unknown-t-score-exercise-solution.xlsx
11.4 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/08. Practical Example Linear Regression (Part 5).vtt
11.3 kB
15. Statistics - Descriptive Statistics/assets/16. 2.9.Variance-exercise-solution.xlsx
11.3 kB
20. Statistics - Hypothesis Testing/assets/06. 4.4.Test-for-the-mean.Population-variance-known-exercise.xlsx
11.3 kB
53. Deep Learning - Business Case Example/01. Business Case Exploring the Dataset and Identifying Predictors.vtt
11.3 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/09. TensorFlow-MNIST-Part5-with-comments.ipynb
11.2 kB
15. Statistics - Descriptive Statistics/assets/17. 2.10.Standard-deviation-and-coefficient-of-variation-lesson.xlsx
11.2 kB
05. The Field of Data Science - Popular Data Science Techniques/01. Techniques for Working with Traditional Data.vtt
11.2 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/04. Basic NN Example (Part 4).vtt
11.2 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/01. Business Case Getting Acquainted with the Dataset.vtt
11.2 kB
20. Statistics - Hypothesis Testing/assets/05. 4.4.Test-for-the-mean.Population-variance-known-lesson.xlsx
11.2 kB
05. The Field of Data Science - Popular Data Science Techniques/10. Types of Machine Learning.vtt
11.2 kB
58. Software Integration/03. Taking a Closer Look at APIs.vtt
11.2 kB
15. Statistics - Descriptive Statistics/assets/12. 2.7.Mean-median-and-mode-exercise.xlsx
11.1 kB
65. Appendix - pandas Fundamentals/01. Introduction to pandas Series.vtt
11.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/03. 3.9.Population-variance-known-z-score-exercise.xlsx
11.1 kB
15. Statistics - Descriptive Statistics/assets/16. 2.9.Variance-exercise.xlsx
11.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/06. 3.11.Population-variance-unknown-t-score-lesson.xlsx
11.0 kB
20. Statistics - Hypothesis Testing/assets/13. 4.8.Test-for-the-mean.Independent-samples-Part-1-exercise.xlsx
11.0 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/15. Species-Segmentation-with-Cluster-Analysis-Part-2-Exercise.ipynb
11.0 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/08. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/09. TensorFlow-Audiobooks-optimizing-the-algorithm.ipynb
10.9 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/07. 3.11.Population-variance-unknown-t-score-exercise.xlsx
10.9 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/11. Obtaining Dummies from a Single Feature.vtt
10.8 kB
20. Statistics - Hypothesis Testing/assets/15. 4.9.Test-for-the-mean.Independent-samples-Part-2-exercise-2.xlsx
10.8 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/16. Classifying the Various Reasons for Absence.vtt
10.8 kB
65. Appendix - pandas Fundamentals/11. Data Selection in pandas DataFrames.vtt
10.8 kB
15. Statistics - Descriptive Statistics/assets/11. 2.7.Mean-median-and-mode-lesson.xlsx
10.7 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/08. TensorFlow-MNIST-Part4-with-comments.ipynb
10.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/09. 3.13.Confidence-intervals.Two-means.Dependent-samples-lesson.xlsx
10.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/08. MNIST Learning.vtt
10.7 kB
64. Appendix - Additional Python Tools/06. Anonymous (Lambda) Functions.vtt
10.7 kB
12. Probability - Distributions/02. Types of Probability Distributions.vtt
10.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/10. sklearn-Feature-Selection-with-F-regression.ipynb
10.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-with-comments.ipynb
10.7 kB
17. Statistics - Inferential Statistics Fundamentals/assets/04. 3.4.Standard-normal-distribution-lesson.xlsx
10.6 kB
28. Python - Sequences/01. Lists.vtt
10.6 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/07. TensorFlow-Audiobooks-Outlining-the-model-with-comments.ipynb
10.6 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/05. Categorical.csv
10.6 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise-Solution.ipynb
10.6 kB
63. Case Study - Analyzing the Predicted Outputs in Tableau/02. Analyzing Age vs Probability in Tableau.vtt
10.5 kB
65. Appendix - pandas Fundamentals/assets/13. Region.csv
10.5 kB
65. Appendix - pandas Fundamentals/assets/01. Region.csv
10.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise-solution.xlsx
10.4 kB
15. Statistics - Descriptive Statistics/assets/15. 2.9.Variance-lesson.xlsx
10.3 kB
13. Probability - Probability in Other Fields/01. Probability in Finance.vtt
10.3 kB
53. Deep Learning - Business Case Example/assets/09. TensorFlow-Audiobooks-Machine-Learning-Part3-with-comments.ipynb
10.3 kB
53. Deep Learning - Business Case Example/assets/05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/05. TensorFlow-Audiobooks-Preprocessing-Exercise-Solution.ipynb
10.3 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/09. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared-Exercise.ipynb
10.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/11. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-lesson.xlsx
10.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/12. 3.14.Confidence-intervals.Two-means.Independent-samples-Part-1-exercise.xlsx
10.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise-solution.xlsx
10.0 kB
20. Statistics - Hypothesis Testing/assets/10. 4.7.Test-for-the-mean.Dependent-samples-lesson.xlsx
10.0 kB
38. Advanced Statistical Methods - K-Means Clustering/02. A Simple Example of Clustering.vtt
10.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/19. Train - Test Split Explained.vtt
9.9 kB
12. Probability - Distributions/assets/15. Customers-Membership.xlsx
9.9 kB
63. Case Study - Analyzing the Predicted Outputs in Tableau/04. Analyzing Reasons vs Probability in Tableau.vtt
9.9 kB
20. Statistics - Hypothesis Testing/assets/12. 4.8.Test-for-the-mean.Independent-samples-Part-1-lesson.xlsx
9.9 kB
02. The Field of Data Science - The Various Data Science Disciplines/03. Business Analytics, Data Analytics, and Data Science An Introduction.vtt
9.9 kB
18. Statistics - Inferential Statistics Confidence Intervals/02. Confidence Intervals; Population Variance Known; Z-score.vtt
9.8 kB
52. Deep Learning - Classifying on the MNIST Dataset/06. MNIST Preprocess the Data - Shuffle and Batch.vtt
9.8 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/11. Dealing with Categorical Data - Dummy Variables.vtt
9.8 kB
12. Probability - Distributions/assets/15. Daily-Views.xlsx
9.8 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/13. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-lesson.xlsx
9.7 kB
15. Statistics - Descriptive Statistics/assets/14. 2.8.Skewness-exercise.xlsx
9.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/13. Making-predictions-with-comments.ipynb
9.6 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/07. TensorFlow-Audiobooks-Outlining-the-model.ipynb
9.6 kB
05. The Field of Data Science - Popular Data Science Techniques/09. Machine Learning (ML) Techniques.vtt
9.5 kB
20. Statistics - Hypothesis Testing/assets/14. 4.9.Test-for-the-mean.Independent-samples-Part-2-lesson.xlsx
9.5 kB
03. The Field of Data Science - Connecting the Data Science Disciplines/01. Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.vtt
9.5 kB
12. Probability - Distributions/08. Characteristics of Continuous Distributions.vtt
9.4 kB
18. Statistics - Inferential Statistics Confidence Intervals/assets/14. 3.15.Confidence-intervals.Two-means.Independent-samples-Part-2-exercise.xlsx
9.4 kB
58. Software Integration/02. What are Data Connectivity, APIs, and Endpoints.vtt
9.4 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/04. MNIST Model Outline.vtt
9.4 kB
38. Advanced Statistical Methods - K-Means Clustering/12. Market Segmentation with Cluster Analysis (Part 2).vtt
9.4 kB
13. Probability - Probability in Other Fields/02. Probability in Statistics.vtt
9.3 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/08. sklearn-Multiple-Linear-Regression-and-Adjusted-R-squared.ipynb
9.3 kB
42. Part 6 Mathematics/10. Dot Product of Matrices.vtt
9.3 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/06. TensorFlow-Minimal-example-Part2.ipynb
9.3 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/19. sklearn-Train-Test-Split-with-comments.ipynb
9.3 kB
09. Part 2 Probability/01. The Basic Probability Formula.vtt
9.2 kB
28. Python - Sequences/05. Dictionaries.vtt
9.1 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/26. Analyzing the Dates from the Initial Data Set.vtt
9.1 kB
05. The Field of Data Science - Popular Data Science Techniques/05. Business Intelligence (BI) Techniques.vtt
9.0 kB
12. Probability - Distributions/06. Discrete Distributions The Binomial Distribution.vtt
9.0 kB
44. Deep Learning - Introduction to Neural Networks/11. Optimization Algorithm 1-Parameter Gradient Descent.vtt
9.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/14. Feature Scaling (Standardization).vtt
9.0 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/02. Creating the Targets for the Logistic Regression.vtt
8.9 kB
28. Python - Sequences/02. Using Methods.vtt
8.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/07. sklearn-Multiple-Linear-Regression-with-comments.ipynb
8.9 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/08. 5.5.TensorFlow-Minimal-example-Part-3.ipynb
8.9 kB
20. Statistics - Hypothesis Testing/03. Rejection Region and Significance Level.vtt
8.8 kB
21. Statistics - Practical Example Hypothesis Testing/01. Practical Example Hypothesis Testing.vtt
8.8 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/07. TensorFlow-MNIST-Part3-with-comments.ipynb
8.8 kB
53. Deep Learning - Business Case Example/assets/05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/05. TensorFlow-Audiobooks-Preprocessing-Exercise.ipynb
8.8 kB
29. Python - Iterations/03. Lists with the range() Function.vtt
8.8 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/08. Interpreting the Coefficients for Our Problem.vtt
8.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/07. 12.7.TensorFlow-MNIST-with-comments-Part-5.ipynb
8.7 kB
64. Appendix - Additional Python Tools/03. Introduction to Nested For Loops.vtt
8.7 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/32. Absenteeism-Exercise-Preprocessing-df-preprocessed.ipynb
8.7 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/07. How-to-Choose-the-Number-of-Clusters-Solution.ipynb
8.7 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/05. Splitting the Data for Training and Testing.vtt
8.7 kB
64. Appendix - Additional Python Tools/04. Triple Nested For Loops.vtt
8.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/09. Confidence intervals. Two means. Dependent samples.vtt
8.7 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/10. Machine Learning with Naïve Bayes (First Attempt).vtt
8.6 kB
12. Probability - Distributions/01. Fundamentals of Probability Distributions.vtt
8.6 kB
46. Deep Learning - TensorFlow 2.0 Introduction/06. Outlining the Model with TensorFlow 2.vtt
8.6 kB
65. Appendix - pandas Fundamentals/12. pandas DataFrames - Indexing with .iloc[].vtt
8.5 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/02. Practical Example Linear Regression (Part 2).vtt
8.5 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/29. Absenteeism-Exercise-Removing-the-Date-Column-SOLUTION.ipynb
8.5 kB
36. Advanced Statistical Methods - Logistic Regression/assets/16. Bank-data-testing.csv
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/03. Countries-exercise.csv
8.5 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/07. Countries-exercise.csv
8.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/06. Creating a Data Provider.vtt
8.4 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/05. First Regression in Python.vtt
8.4 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/07. Dropping a Column from a DataFrame in Python.vtt
8.4 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/09. MNIST Results and Testing.vtt
8.4 kB
15. Statistics - Descriptive Statistics/15. Variance.vtt
8.4 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/01. The Linear Regression Model.vtt
8.3 kB
53. Deep Learning - Business Case Example/09. Business Case Setting an Early Stopping Mechanism.vtt
8.3 kB
20. Statistics - Hypothesis Testing/05. Test for the Mean. Population Variance Known.vtt
8.3 kB
62. Case Study - Loading the 'absenteeism_module'/03. Deploying the 'absenteeism_module' - Part II.vtt
8.2 kB
29. Python - Iterations/04. Conditional Statements and Loops.vtt
8.2 kB
65. Appendix - pandas Fundamentals/09. Introduction to pandas DataFrames - Part II.vtt
8.2 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/27. Extracting the Month Value from the Date Column.vtt
8.2 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/07. Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.vtt
8.2 kB
06. The Field of Data Science - Popular Data Science Tools/01. Necessary Programming Languages and Software Used in Data Science.vtt
8.2 kB
52. Deep Learning - Classifying on the MNIST Dataset/10. MNIST Learning.vtt
8.1 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/03. Tokenization and Vectorization.vtt
8.1 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/06. 12.6.TensorFlow-MNIST-with-comments-Part-4.ipynb
8.1 kB
22. Part 4 Introduction to Python/06. Prerequisites for Coding in the Jupyter Notebooks.vtt
8.1 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/09. Basic NN Example with TF Model Output.vtt
8.0 kB
29. Python - Iterations/06. How to Iterate over Dictionaries.vtt
8.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/07. sklearn-Multiple-Linear-Regression.ipynb
8.0 kB
44. Deep Learning - Introduction to Neural Networks/12. Optimization Algorithm n-Parameter Gradient Descent.vtt
8.0 kB
05. The Field of Data Science - Popular Data Science Techniques/11. Evolution and Latest Trends of Machine Learning (ML).vtt
7.9 kB
11. Probability - Bayesian Inference/11. Bayes' Law.vtt
7.9 kB
23. Python - Variables and Data Types/03. Python Strings.vtt
7.8 kB
63. Case Study - Analyzing the Predicted Outputs in Tableau/06. Analyzing Transportation Expense vs Probability in Tableau.vtt
7.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/15. Feature Selection through Standardization of Weights.vtt
7.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/03. Simple Linear Regression with sklearn.vtt
7.8 kB
39. Advanced Statistical Methods - Other Types of Clustering/02. Dendrogram.vtt
7.8 kB
38. Advanced Statistical Methods - K-Means Clustering/06. How to Choose the Number of Clusters.vtt
7.7 kB
40. ChatGPT for Data Science/10. Exploratory data analysis (EDA) with ChatGPT - correlation matrix, outlier detec.vtt
7.7 kB
36. Advanced Statistical Methods - Logistic Regression/assets/15. Testing-the-model-with-comments.ipynb
7.7 kB
23. Python - Variables and Data Types/assets/03. Strings-Lecture-Py3.ipynb
7.7 kB
38. Advanced Statistical Methods - K-Means Clustering/11. Market Segmentation with Cluster Analysis (Part 1).vtt
7.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/02. Adjusted R-Squared.vtt
7.7 kB
28. Python - Sequences/04. Tuples.vtt
7.7 kB
40. ChatGPT for Data Science/assets/04. Data-Preprocessing-Medical-Data.ipynb
7.7 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/10. Interpreting the Coefficients of the Logistic Regression.vtt
7.7 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/06. Selecting-the-number-of-clusters-with-comments.ipynb
7.7 kB
40. ChatGPT for Data Science/19. Using ChatGPT for ethical considerations.vtt
7.7 kB
40. ChatGPT for Data Science/09. Exploratory data analysis (EDA) with ChatGPT - histogram and scatter plot.vtt
7.6 kB
02. The Field of Data Science - The Various Data Science Disciplines/01. Data Science and Business Buzzwords Why are there so Many.vtt
7.5 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/14. Species-Segmentation-with-Cluster-Analysis-Part-1-Solution.ipynb
7.5 kB
65. Appendix - pandas Fundamentals/08. Introduction to pandas DataFrames - Part I.vtt
7.5 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/29. Absenteeism-Exercise-Preprocessing-ChP-df-date-reason-mod.ipynb
7.5 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/05. 12.5.TensorFlow-MNIST-with-comments-Part-3.ipynb
7.5 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/06. Fitting the Model and Assessing its Accuracy.vtt
7.5 kB
22. Part 4 Introduction to Python/01. Introduction to Programming.vtt
7.5 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/19. sklearn-Train-Test-Split.ipynb
7.4 kB
65. Appendix - pandas Fundamentals/03. Working with Methods in Python - Part I.vtt
7.4 kB
40. ChatGPT for Data Science/01. Traditional data science methods and the role of ChatGPT.vtt
7.4 kB
12. Probability - Distributions/07. Discrete Distributions The Poisson Distribution.vtt
7.4 kB
22. Part 4 Introduction to Python/02. Why Python.vtt
7.3 kB
20. Statistics - Hypothesis Testing/01. Null vs Alternative Hypothesis.vtt
7.3 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/07. Business Case Model Outline.vtt
7.3 kB
52. Deep Learning - Classifying on the MNIST Dataset/08. MNIST Outline the Model.vtt
7.3 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/03. Checking the Content of the Data Set.vtt
7.3 kB
09. Part 2 Probability/04. Events and Their Complements.vtt
7.3 kB
13. Probability - Probability in Other Fields/03. Probability in Data Science.vtt
7.3 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/11. Dummy-variables-with-comments.ipynb
7.3 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/08. A3 Normality and Homoscedasticity.vtt
7.2 kB
58. Software Integration/05. Software Integration - Explained.vtt
7.2 kB
48. Deep Learning - Overfitting/06. Early Stopping or When to Stop Training.vtt
7.1 kB
09. Part 2 Probability/02. Computing Expected Values.vtt
7.1 kB
09. Part 2 Probability/03. Frequency.vtt
7.1 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/12. Testing the Model on New Data.vtt
7.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/10. Feature Selection (F-regression).vtt
7.1 kB
02. The Field of Data Science - The Various Data Science Disciplines/05. Traditional AI vs. Generative AI.vtt
7.1 kB
15. Statistics - Descriptive Statistics/09. Cross Tables and Scatter Plots.vtt
7.1 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/08. Business Case Optimization.vtt
7.1 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/03. Digging into a Deep Net.vtt
7.1 kB
02. The Field of Data Science - The Various Data Science Disciplines/06. More Examples of Generative AI.vtt
7.0 kB
30. Python - Advanced Python Tools/01. Object Oriented Programming.vtt
7.0 kB
01. Part 1 Introduction/01. A Practical Example What You Will Learn in This Course.vtt
7.0 kB
26. Python - Conditional Statements/03. The ELIF Statement.vtt
7.0 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/12. Market-segmentation-example-Part2-with-comments.ipynb
7.0 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/11. R-Squared.vtt
7.0 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/03. Minimal-example-Part-3.ipynb
7.0 kB
36. Advanced Statistical Methods - Logistic Regression/assets/16. Testing-the-Model-Exercise.ipynb
7.0 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/04. Simple Linear Regression with sklearn - A StatsModels-like Summary Table.vtt
6.9 kB
20. Statistics - Hypothesis Testing/10. Test for the Mean. Dependent Samples.vtt
6.9 kB
38. Advanced Statistical Methods - K-Means Clustering/13. How is Clustering Useful.vtt
6.9 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/12. TensorFlow-MNIST-complete.ipynb
6.9 kB
29. Python - Iterations/01. For Loops.vtt
6.9 kB
46. Deep Learning - TensorFlow 2.0 Introduction/07. Interpreting the Result and Extracting the Weights and Bias.vtt
6.9 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/11. Machine Learning with Naïve Bayes – converting the problem to a binary one.vtt
6.9 kB
15. Statistics - Descriptive Statistics/03. Categorical Variables - Visualization Techniques.vtt
6.9 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/02. Basic NN Example (Part 2).vtt
6.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/08. Calculating the Adjusted R-Squared in sklearn.vtt
6.8 kB
62. Case Study - Loading the 'absenteeism_module'/assets/01. absenteeism-module.py
6.8 kB
38. Advanced Statistical Methods - K-Means Clustering/01. K-Means Clustering.vtt
6.8 kB
46. Deep Learning - TensorFlow 2.0 Introduction/01. How to Install TensorFlow 2.0.vtt
6.7 kB
65. Appendix - pandas Fundamentals/10. pandas DataFrames - Common Attributes.vtt
6.7 kB
36. Advanced Statistical Methods - Logistic Regression/15. Testing the Model.vtt
6.7 kB
04. The Field of Data Science - The Benefits of Each Discipline/01. The Reason Behind These Disciplines.vtt
6.7 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/12. Testing the Model We Created.vtt
6.7 kB
52. Deep Learning - Classifying on the MNIST Dataset/04. MNIST Preprocess the Data - Create a Validation Set and Scale It.vtt
6.7 kB
40. ChatGPT for Data Science/14. Decoding comic book data Python Regular Expressions and ChatGPT.vtt
6.6 kB
18. Statistics - Inferential Statistics Confidence Intervals/08. Margin of Error.vtt
6.6 kB
64. Appendix - Additional Python Tools/02. Iterating Over Range Objects.vtt
6.6 kB
40. ChatGPT for Data Science/04. Data Preprocessing with ChatGPT.vtt
6.6 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/05. TensorFlow-MNIST-Part2-with-comments.ipynb
6.5 kB
40. ChatGPT for Data Science/05. First attempt at machine learning with ChatGPT.vtt
6.5 kB
54. Deep Learning - Conclusion/04. An overview of CNNs.vtt
6.5 kB
40. ChatGPT for Data Science/17. Algorithm recommendation recommendation engine for movies with ChatGPT.vtt
6.5 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/07. Creating a Summary Table with the Coefficients and Intercept.vtt
6.5 kB
15. Statistics - Descriptive Statistics/17. Standard Deviation and Coefficient of Variation.vtt
6.5 kB
53. Deep Learning - Business Case Example/08. Business Case Learning and Interpreting the Result.vtt
6.5 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/08. How to Interpret the Regression Table.vtt
6.5 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/04. Learning Rate Schedules, or How to Choose the Optimal Learning Rate.vtt
6.5 kB
58. Software Integration/01. What are Data, Servers, Clients, Requests, and Responses.vtt
6.4 kB
18. Statistics - Inferential Statistics Confidence Intervals/11. Confidence intervals. Two means. Independent Samples (Part 1).vtt
6.4 kB
38. Advanced Statistical Methods - K-Means Clustering/09. To Standardize or not to Standardize.vtt
6.4 kB
11. Probability - Bayesian Inference/04. Union of Sets.vtt
6.4 kB
37. Advanced Statistical Methods - Cluster Analysis/02. Some Examples of Clusters.vtt
6.4 kB
44. Deep Learning - Introduction to Neural Networks/01. Introduction to Neural Networks.vtt
6.4 kB
36. Advanced Statistical Methods - Logistic Regression/assets/05. Example-bank-data.csv
6.4 kB
42. Part 6 Mathematics/04. Arrays in Python - A Convenient Way To Represent Matrices.vtt
6.4 kB
39. Advanced Statistical Methods - Other Types of Clustering/03. Heatmaps.vtt
6.3 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/07. 5.4.TensorFlow-Minimal-example-Part-2.ipynb
6.3 kB
28. Python - Sequences/assets/05. Dictionaries-Solution-Py3.ipynb
6.3 kB
51. Deep Learning - Preprocessing/03. Standardization.vtt
6.3 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/04. 12.4.TensorFlow-MNIST-with-comments-Part-2.ipynb
6.2 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/02. The Naive Bayes Algorithm.vtt
6.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/17. sklearn-Feature-Scaling-Exercise.ipynb
6.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/03. sklearn-Simple-Linear-Regression-with-comments.ipynb
6.2 kB
29. Python - Iterations/02. While Loops and Incrementing.vtt
6.2 kB
10. Probability - Combinatorics/06. Solving Combinations.vtt
6.2 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/10. Analyzing the Reasons for Absence.vtt
6.2 kB
40. ChatGPT for Data Science/assets/19. friendships.csv
6.1 kB
15. Statistics - Descriptive Statistics/11. Mean, median and mode.vtt
6.1 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/07. Optimizing User Reviews Data Preprocessing & EDA.vtt
6.1 kB
25. Python - Other Python Operators/02. Logical and Identity Operators.vtt
6.1 kB
52. Deep Learning - Classifying on the MNIST Dataset/12. MNIST Testing the Model.vtt
6.1 kB
20. Statistics - Hypothesis Testing/08. Test for the Mean. Population Variance Unknown.vtt
6.1 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/31. Working on Education, Children, and Pets.vtt
6.1 kB
36. Advanced Statistical Methods - Logistic Regression/02. A Simple Example in Python.vtt
6.0 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/16. Preparing the Deployment of the Model through a Module.vtt
6.0 kB
11. Probability - Bayesian Inference/07. The Conditional Probability Formula.vtt
6.0 kB
17. Statistics - Inferential Statistics Fundamentals/02. What is a Distribution.vtt
6.0 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/11. Market-segmentation-example-with-comments.ipynb
6.0 kB
48. Deep Learning - Overfitting/01. What is Overfitting.vtt
6.0 kB
25. Python - Other Python Operators/assets/02. Logical-and-Identity-Operators-Lecture-Py3.ipynb
6.0 kB
65. Appendix - pandas Fundamentals/06. Using .unique() and .nunique().vtt
6.0 kB
14. Part 3 Statistics/01. Population and Sample.vtt
6.0 kB
05. The Field of Data Science - Popular Data Science Techniques/03. Techniques for Working with Big Data.vtt
6.0 kB
40. ChatGPT for Data Science/08. Analyzing a client database with ChatGPT in Python – analyzing top clients, RFM.vtt
6.0 kB
58. Software Integration/04. Communication between Software Products through Text Files.vtt
6.0 kB
15. Statistics - Descriptive Statistics/01. Types of Data.vtt
6.0 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/02. Country-clusters-with-comments.ipynb
5.9 kB
65. Appendix - pandas Fundamentals/05. Parameters and Arguments in pandas.vtt
5.9 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/13. Making-predictions.ipynb
5.9 kB
36. Advanced Statistical Methods - Logistic Regression/assets/15. Testing-the-model.ipynb
5.9 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/13. Saving the Model and Preparing it for Deployment.vtt
5.9 kB
54. Deep Learning - Conclusion/06. An Overview of non-NN Approaches.vtt
5.9 kB
12. Probability - Distributions/10. Continuous Distributions The Standard Normal Distribution.vtt
5.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/13. sklearn-Multiple-Linear-Regression-Exercise.ipynb
5.8 kB
40. ChatGPT for Data Science/12. Hypothesis testing with ChatGPT.vtt
5.8 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/04. Categorical-data-with-comments.ipynb
5.8 kB
18. Statistics - Inferential Statistics Confidence Intervals/04. Confidence Interval Clarifications.vtt
5.7 kB
17. Statistics - Inferential Statistics Fundamentals/06. Central Limit Theorem.vtt
5.7 kB
40. ChatGPT for Data Science/assets/12. Students-Hypothesis-Testing.ipynb
5.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/07. A2 No Endogeneity.vtt
5.7 kB
36. Advanced Statistical Methods - Logistic Regression/07. Understanding Logistic Regression Tables.vtt
5.7 kB
65. Appendix - pandas Fundamentals/07. Using .sort_values().vtt
5.7 kB
53. Deep Learning - Business Case Example/assets/04. TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/assets/04. TensorFlow-Audiobooks-Preprocessing.ipynb
5.7 kB
59. Case Study - What's Next in the Course/01. Game Plan for this Python, SQL, and Tableau Business Exercise.vtt
5.7 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/06. Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).vtt
5.7 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/04. Python Packages Installation.vtt
5.7 kB
65. Appendix - pandas Fundamentals/13. pandas DataFrames - Indexing with .loc[].vtt
5.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/16. Predicting with the Standardized Coefficients.vtt
5.7 kB
42. Part 6 Mathematics/08. Transpose of a Matrix.vtt
5.7 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/07. How-to-Choose-the-Number-of-Clusters-Exercise.ipynb
5.7 kB
08. The Field of Data Science - Debunking Common Misconceptions/01. Debunking Common Misconceptions.vtt
5.7 kB
28. Python - Sequences/03. List Slicing.vtt
5.7 kB
27. Python - Python Functions/assets/07. Notable-Built-In-Functions-in-Python-Solution-Py3.ipynb
5.7 kB
20. Statistics - Hypothesis Testing/04. Type I Error and Type II Error.vtt
5.6 kB
46. Deep Learning - TensorFlow 2.0 Introduction/02. TensorFlow Outline and Comparison with Other Libraries.vtt
5.6 kB
44. Deep Learning - Introduction to Neural Networks/03. Types of Machine Learning.vtt
5.6 kB
54. Deep Learning - Conclusion/01. Summary on What You've Learned.vtt
5.6 kB
20. Statistics - Hypothesis Testing/12. Test for the mean. Independent Samples (Part 1).vtt
5.6 kB
11. Probability - Bayesian Inference/01. Sets and Events.vtt
5.6 kB
23. Python - Variables and Data Types/assets/03. Strings-Solution-Py3.ipynb
5.6 kB
01. Part 1 Introduction/02. What Does the Course Cover.vtt
5.6 kB
12. Probability - Distributions/14. Continuous Distributions The Logistic Distribution.vtt
5.5 kB
18. Statistics - Inferential Statistics Confidence Intervals/06. Confidence Intervals; Population Variance Unknown; T-score.vtt
5.5 kB
36. Advanced Statistical Methods - Logistic Regression/assets/13. Calculating-the-Accuracy-of-the-Model-Exercise.ipynb
5.5 kB
20. Statistics - Hypothesis Testing/14. Test for the mean. Independent Samples (Part 2).vtt
5.5 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/09. Understanding Differences between Multinomial and Bernouilli Naive Bayes.vtt
5.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/11. Business Case A Comment on the Homework.vtt
5.5 kB
44. Deep Learning - Introduction to Neural Networks/10. Common Objective Functions Cross-Entropy Loss.vtt
5.5 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/11. Backward Elimination or How to Simplify Your Model.vtt
5.5 kB
05. The Field of Data Science - Popular Data Science Techniques/08. Real Life Examples of Traditional Methods.vtt
5.5 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/04. TensorFlow Intro.vtt
5.5 kB
36. Advanced Statistical Methods - Logistic Regression/assets/02. Admittance-with-comments.ipynb
5.4 kB
51. Deep Learning - Preprocessing/05. Binary and One-Hot Encoding.vtt
5.4 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/06. Calculating the Accuracy of the Model.vtt
5.4 kB
20. Statistics - Hypothesis Testing/07. p-value.vtt
5.4 kB
36. Advanced Statistical Methods - Logistic Regression/10. Binary Predictors in a Logistic Regression.vtt
5.4 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/05. Activation Functions.vtt
5.4 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/09. Standardizing only the Numerical Variables (Creating a Custom Scaler).vtt
5.4 kB
12. Probability - Distributions/05. Discrete Distributions The Bernoulli Distribution.vtt
5.3 kB
17. Statistics - Inferential Statistics Fundamentals/03. The Normal Distribution.vtt
5.3 kB
40. ChatGPT for Data Science/06. Analyzing a client database with ChatGPT in Python.vtt
5.3 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/17. Using .concat() in Python.vtt
5.3 kB
36. Advanced Statistical Methods - Logistic Regression/14. Underfitting and Overfitting.vtt
5.3 kB
40. ChatGPT for Data Science/07. Analyzing a client database with ChatGPT in Python – analyzing top products.vtt
5.3 kB
02. The Field of Data Science - The Various Data Science Disciplines/02. What is the difference between Analysis and Analytics.vtt
5.2 kB
15. Statistics - Descriptive Statistics/19. Covariance.vtt
5.2 kB
12. Probability - Distributions/09. Continuous Distributions The Normal Distribution.vtt
5.2 kB
02. The Field of Data Science - The Various Data Science Disciplines/07. A Breakdown of our Data Science Infographic.vtt
5.2 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/08. Reg Ex for Analyzing Text Review Data.vtt
5.2 kB
36. Advanced Statistical Methods - Logistic Regression/03. Logistic vs Logit Function.vtt
5.2 kB
39. Advanced Statistical Methods - Other Types of Clustering/01. Types of Clustering.vtt
5.2 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/05. Overcome Imbalanced Data in Machine Learning.vtt
5.2 kB
28. Python - Sequences/assets/03. List-Slicing-Lecture-Py3.ipynb
5.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/09. A4 No Autocorrelation.vtt
5.1 kB
48. Deep Learning - Overfitting/03. What is Validation.vtt
5.1 kB
62. Case Study - Loading the 'absenteeism_module'/02. Deploying the 'absenteeism_module' - Part I.vtt
5.1 kB
15. Statistics - Descriptive Statistics/21. Correlation Coefficient.vtt
5.1 kB
37. Advanced Statistical Methods - Cluster Analysis/01. Introduction to Cluster Analysis.vtt
5.1 kB
10. Probability - Combinatorics/05. Solving Variations without Repetition.vtt
5.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/03. sklearn-Simple-Linear-Regression.ipynb
5.0 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/05. Clustering-Categorical-Data-Solution.ipynb
5.0 kB
22. Part 4 Introduction to Python/04. Installing Python and Jupyter.vtt
5.0 kB
30. Python - Advanced Python Tools/04. Importing Modules in Python.vtt
5.0 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/08. Basic NN Example with TF Loss Function and Gradient Descent.vtt
5.0 kB
44. Deep Learning - Introduction to Neural Networks/06. The Linear model with Multiple Inputs and Multiple Outputs.vtt
5.0 kB
15. Statistics - Descriptive Statistics/02. Levels of Measurement.vtt
4.9 kB
43. Part 7 Deep Learning/01. What to Expect from this Part.vtt
4.9 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/01. Stochastic Gradient Descent.vtt
4.9 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/01. Exploring the Problem with a Machine Learning Mindset.vtt
4.9 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/23. Absenteeism-Exercise-Preprocessing-df-reason-mod.ipynb
4.9 kB
23. Python - Variables and Data Types/01. Variables.vtt
4.9 kB
36. Advanced Statistical Methods - Logistic Regression/assets/08. Understanding-Logistic-Regression-Tables-Solution.ipynb
4.9 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/28. Extracting the Day of the Week from the Date Column.vtt
4.9 kB
44. Deep Learning - Introduction to Neural Networks/02. Training the Model.vtt
4.9 kB
11. Probability - Bayesian Inference/10. The Multiplication Law.vtt
4.8 kB
18. Statistics - Inferential Statistics Confidence Intervals/13. Confidence intervals. Two means. Independent Samples (Part 2).vtt
4.8 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/12. Market-segmentation-example-Part2.ipynb
4.8 kB
53. Deep Learning - Business Case Example/06. Business Case Load the Preprocessed Data.vtt
4.8 kB
07. The Field of Data Science - Careers in Data Science/01. Finding the Job - What to Expect and What to Look for.vtt
4.8 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/03. A-Simple-Example-of-Clustering-Solution.ipynb
4.8 kB
42. Part 6 Mathematics/01. What is a Matrix.vtt
4.7 kB
11. Probability - Bayesian Inference/02. Ways Sets Can Interact.vtt
4.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/11. Dummy-Variables.ipynb
4.7 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/10. A5 No Multicollinearity.vtt
4.7 kB
53. Deep Learning - Business Case Example/assets/07. TensorFlow-Audiobooks-Machine-Learning-Part1-with-comments.ipynb
4.7 kB
28. Python - Sequences/assets/04. Tuples-Solution-Py3.ipynb
4.7 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/07. Backpropagation.vtt
4.7 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/30. Analyzing Several Straightforward Columns for this Exercise.vtt
4.7 kB
38. Advanced Statistical Methods - K-Means Clustering/08. Pros and Cons of K-Means Clustering.vtt
4.7 kB
18. Statistics - Inferential Statistics Confidence Intervals/05. Student's T Distribution.vtt
4.7 kB
42. Part 6 Mathematics/assets/04. Scalars-Vectors-and-Matrices.ipynb
4.7 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/01. Basic NN Example (Part 1).vtt
4.6 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/06. Selecting-the-number-of-clusters.ipynb
4.6 kB
27. Python - Python Functions/02. How to Create a Function with a Parameter.vtt
4.6 kB
27. Python - Python Functions/assets/07. Notable-Built-In-Functions-in-Python-Lecture-Py3.ipynb
4.6 kB
36. Advanced Statistical Methods - Logistic Regression/assets/11. Binary-Predictors-in-a-Logistic-Regression-Solution.ipynb
4.6 kB
10. Probability - Combinatorics/07. Symmetry of Combinations.vtt
4.6 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/06. Activation Functions Softmax Activation.vtt
4.6 kB
35. Advanced Statistical Methods - Practical Example Linear Regression/04. Practical Example Linear Regression (Part 3).vtt
4.6 kB
12. Probability - Distributions/13. Continuous Distributions The Exponential Distribution.vtt
4.6 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/09. Decomposition of Variability.vtt
4.6 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/14. Species-Segmentation-with-Cluster-Analysis-Part-1-Exercise.ipynb
4.6 kB
15. Statistics - Descriptive Statistics/05. Numerical Variables - Frequency Distribution Table.vtt
4.6 kB
36. Advanced Statistical Methods - Logistic Regression/assets/05. Building-a-Logistic-Regression-Solution.ipynb
4.5 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/13. Making Predictions with the Linear Regression.vtt
4.5 kB
10. Probability - Combinatorics/02. Permutations and How to Use Them.vtt
4.5 kB
36. Advanced Statistical Methods - Logistic Regression/09. What do the Odds Actually Mean.vtt
4.5 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/03. Basic NN Example (Part 3).vtt
4.5 kB
28. Python - Sequences/assets/02. Help-Yourself-with-Methods-Lecture-Py3.ipynb
4.5 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/03. The Importance of Working with a Balanced Dataset.vtt
4.5 kB
37. Advanced Statistical Methods - Cluster Analysis/04. Math Prerequisites.vtt
4.5 kB
48. Deep Learning - Overfitting/05. N-Fold Cross Validation.vtt
4.5 kB
24. Python - Basic Python Syntax/01. Using Arithmetic Operators in Python.vtt
4.5 kB
40. ChatGPT for Data Science/assets/05. Medical-Data-ML-Attempt.ipynb
4.5 kB
40. ChatGPT for Data Science/16. Algorithm recommendation Movie Database Analysis with ChatGPT.vtt
4.5 kB
40. ChatGPT for Data Science/18. Ethical principles in data and AI utilization.vtt
4.5 kB
28. Python - Sequences/assets/05. Dictionaries-Lecture-Py3.ipynb
4.5 kB
42. Part 6 Mathematics/09. Dot Product.vtt
4.4 kB
59. Case Study - What's Next in the Course/03. Introducing the Data Set.vtt
4.4 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/04. Introduction to Terms with Multiple Meanings.vtt
4.4 kB
66. Bonus Lecture/01. Bonus Lecture Next Steps.html
4.4 kB
53. Deep Learning - Business Case Example/03. Business Case Balancing the Dataset.vtt
4.4 kB
46. Deep Learning - TensorFlow 2.0 Introduction/08. Customizing a TensorFlow 2 Model.vtt
4.4 kB
36. Advanced Statistical Methods - Logistic Regression/12. Calculating the Accuracy of the Model.vtt
4.4 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/04. Standardizing the Data.vtt
4.4 kB
28. Python - Sequences/assets/03. List-Slicing-Solution-Py3.ipynb
4.4 kB
27. Python - Python Functions/07. Built-in Functions in Python.vtt
4.4 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/07. Multiple Linear Regression with sklearn.vtt
4.4 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/04. Non-Linearities and their Purpose.vtt
4.3 kB
42. Part 6 Mathematics/06. Addition and Subtraction of Matrices.vtt
4.3 kB
24. Python - Basic Python Syntax/assets/01. Arithmetic-Operators-Solution-Py3.ipynb
4.3 kB
10. Probability - Combinatorics/09. Combinatorics in Real-Life The Lottery.vtt
4.3 kB
22. Part 4 Introduction to Python/03. Why Jupyter.vtt
4.3 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/assets/32. Absenteeism-Exercise-EXERCISES-and-SOLUTIONS.ipynb
4.2 kB
36. Advanced Statistical Methods - Logistic Regression/assets/04. Admittance-regression-tables-fixed-error.ipynb
4.2 kB
42. Part 6 Mathematics/03. Linear Algebra and Geometry.vtt
4.2 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/06. Simple-Linear-Regression-with-sklearn-Exercise.ipynb
4.2 kB
10. Probability - Combinatorics/08. Solving Combinations with Separate Sample Spaces.vtt
4.2 kB
59. Case Study - What's Next in the Course/02. The Business Task.vtt
4.2 kB
51. Deep Learning - Preprocessing/01. Preprocessing Introduction.vtt
4.2 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/05. Simple-linear-regression-with-comments.ipynb
4.2 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/02. Importing the Absenteeism Data in Python.vtt
4.1 kB
17. Statistics - Inferential Statistics Fundamentals/04. The Standard Normal Distribution.vtt
4.1 kB
46. Deep Learning - TensorFlow 2.0 Introduction/03. TensorFlow 1 vs TensorFlow 2.vtt
4.1 kB
42. Part 6 Mathematics/02. Scalars and Vectors.vtt
4.1 kB
17. Statistics - Inferential Statistics Fundamentals/08. Estimators and Estimates.vtt
4.1 kB
52. Deep Learning - Classifying on the MNIST Dataset/assets/03. TensorFlow-MNIST-Part1-with-comments.ipynb
4.1 kB
54. Deep Learning - Conclusion/05. An Overview of RNNs.vtt
4.1 kB
65. Appendix - pandas Fundamentals/04. Working with Methods in Python - Part II.vtt
4.0 kB
11. Probability - Bayesian Inference/08. The Law of Total Probability.vtt
4.0 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/assets/03. 12.3.TensorFlow-MNIST-with-comments-Part-1.ipynb
4.0 kB
30. Python - Advanced Python Tools/03. What is the Standard Library.vtt
4.0 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/02. MNIST How to Tackle the MNIST.vtt
3.9 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/10. What is the OLS.vtt
3.9 kB
42. Part 6 Mathematics/05. What is a Tensor.vtt
3.9 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/08. Backpropagation Picture.vtt
3.9 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/11. Market-segmentation-example.ipynb
3.9 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/05. Simple-linear-regression.ipynb
3.9 kB
23. Python - Variables and Data Types/assets/01. Variables-Solution-Py3.ipynb
3.9 kB
10. Probability - Combinatorics/10. A Recap of Combinatorics.vtt
3.9 kB
49. Deep Learning - Initialization/03. State-of-the-Art Method - (Xavier) Glorot Initialization.vtt
3.9 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/05. Clustering-Categorical-Data-Exercise.ipynb
3.9 kB
49. Deep Learning - Initialization/02. Types of Simple Initializations.vtt
3.9 kB
10. Probability - Combinatorics/04. Solving Variations with Repetition.vtt
3.8 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/18. Underfitting and Overfitting.vtt
3.8 kB
23. Python - Variables and Data Types/02. Numbers and Boolean Values in Python.vtt
3.8 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/01. Intro to the Case Study.vtt
3.8 kB
49. Deep Learning - Initialization/01. What is Initialization.vtt
3.8 kB
15. Statistics - Descriptive Statistics/13. Skewness.vtt
3.8 kB
22. Part 4 Introduction to Python/05. Understanding Jupyter's Interface - the Notebook Dashboard.vtt
3.8 kB
26. Python - Conditional Statements/01. The IF Statement.vtt
3.8 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/06. Loading the Dataset and Preprocessing.vtt
3.8 kB
44. Deep Learning - Introduction to Neural Networks/04. The Linear Model (Linear Algebraic Version).vtt
3.8 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/23. Creating Checkpoints while Coding in Jupyter.vtt
3.8 kB
27. Python - Python Functions/assets/07. Notable-Built-In-Functions-in-Python-Exercise-Py3.ipynb
3.7 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/02. Minimal-example-Part-2.ipynb
3.7 kB
52. Deep Learning - Classifying on the MNIST Dataset/01. MNIST The Dataset.vtt
3.7 kB
36. Advanced Statistical Methods - Logistic Regression/assets/12. Accuracy.ipynb
3.7 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/15. iris-with-answers.csv
3.7 kB
52. Deep Learning - Classifying on the MNIST Dataset/02. MNIST How to Tackle the MNIST.vtt
3.7 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/03. A-Simple-Example-of-Clustering-Exercise.ipynb
3.7 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/01. What is sklearn and How is it Different from Other Packages.vtt
3.7 kB
37. Advanced Statistical Methods - Cluster Analysis/03. Difference between Classification and Clustering.vtt
3.7 kB
23. Python - Variables and Data Types/assets/01. Variables-Lecture-Py3.ipynb
3.7 kB
42. Part 6 Mathematics/assets/10. Dot-product-Part-2.ipynb
3.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/01. MNIST What is the MNIST Dataset.vtt
3.7 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/03. Momentum.vtt
3.7 kB
27. Python - Python Functions/05. Conditional Statements and Functions.vtt
3.7 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/03. Selecting the Inputs for the Logistic Regression.vtt
3.7 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/05. MNIST Loss and Optimization Algorithm.vtt
3.7 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/06. Simple-Linear-Regression-Exercise-Solution.ipynb
3.7 kB
36. Advanced Statistical Methods - Logistic Regression/assets/02. Admittance.ipynb
3.6 kB
24. Python - Basic Python Syntax/assets/01. Arithmetic-Operators-Lecture-Py3.ipynb
3.6 kB
36. Advanced Statistical Methods - Logistic Regression/04. Building a Logistic Regression.vtt
3.6 kB
40. ChatGPT for Data Science/assets/19. users.csv
3.6 kB
11. Probability - Bayesian Inference/06. Dependence and Independence of Sets.vtt
3.6 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/01. Multiple Linear Regression.vtt
3.5 kB
46. Deep Learning - TensorFlow 2.0 Introduction/05. Types of File Formats Supporting TensorFlow.vtt
3.5 kB
48. Deep Learning - Overfitting/04. Training, Validation, and Test Datasets.vtt
3.5 kB
40. ChatGPT for Data Science/assets/06. ratings.csv
3.5 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/06. Types of File Formats, supporting Tensors.vtt
3.5 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/07. Adam (Adaptive Moment Estimation).vtt
3.5 kB
25. Python - Other Python Operators/assets/02. Logical-and-Identity-Operators-Solution-Py3.ipynb
3.5 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/02. How to Install TensorFlow 1.vtt
3.5 kB
10. Probability - Combinatorics/03. Simple Operations with Factorials.vtt
3.5 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/12. real-estate-price-size-year-view.csv
3.5 kB
15. Statistics - Descriptive Statistics/07. The Histogram.vtt
3.4 kB
23. Python - Variables and Data Types/assets/02. Numbers-and-Boolean-Values-Lecture-Py3.ipynb
3.4 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/assets/06. 5.3.TensorFlow-Minimal-example-Part-1.ipynb
3.4 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/04. Categorical-data.ipynb
3.4 kB
38. Advanced Statistical Methods - K-Means Clustering/04. Clustering Categorical Data.vtt
3.4 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/02. Country-clusters.ipynb
3.4 kB
27. Python - Python Functions/assets/03. Another-Way-to-Define-a-Function-Lecture-Py3.ipynb
3.4 kB
40. ChatGPT for Data Science/assets/05. patients-preprocessed.csv
3.4 kB
41. Case Study Train a Naive Bayes Classifier with ChatGPT for Sentiment Analysis/04. Imbalanced Data Sets.vtt
3.3 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/02. What is a Deep Net.vtt
3.3 kB
26. Python - Conditional Statements/02. The ELSE Statement.vtt
3.3 kB
26. Python - Conditional Statements/assets/03. Else-If-for-Brief-Elif-Lecture-Py3.ipynb
3.3 kB
23. Python - Variables and Data Types/assets/02. Numbers-and-Boolean-Values-Solution-Py3.ipynb
3.3 kB
12. Probability - Distributions/11. Continuous Distributions The Students' T Distribution.vtt
3.3 kB
18. Statistics - Inferential Statistics Confidence Intervals/01. What are Confidence Intervals.vtt
3.3 kB
42. Part 6 Mathematics/assets/06. Adding-and-subtracting-matrices.ipynb
3.3 kB
28. Python - Sequences/assets/01. Lists-Solution-Py3.ipynb
3.3 kB
42. Part 6 Mathematics/assets/07. Errors-when-adding-scalars-vectors-and-matrices-in-Python.ipynb
3.2 kB
36. Advanced Statistical Methods - Logistic Regression/assets/08. Understanding-Logistic-Regression-Tables-Exercise.ipynb
3.2 kB
36. Advanced Statistical Methods - Logistic Regression/06. An Invaluable Coding Tip.vtt
3.2 kB
26. Python - Conditional Statements/04. A Note on Boolean Values.vtt
3.2 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/09. Business Case Interpretation.vtt
3.2 kB
24. Python - Basic Python Syntax/assets/03. Reassign-Values-Lecture-Py3.ipynb
3.2 kB
27. Python - Python Functions/03. Defining a Function in Python - Part II.vtt
3.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/05. OLS Assumptions.vtt
3.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/12. Creating a Summary Table with P-values.vtt
3.1 kB
52. Deep Learning - Classifying on the MNIST Dataset/03. MNIST Importing the Relevant Packages and Loading the Data.vtt
3.1 kB
52. Deep Learning - Classifying on the MNIST Dataset/09. MNIST Select the Loss and the Optimizer.vtt
3.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/02. How are we Going to Approach this Section.vtt
3.1 kB
05. The Field of Data Science - Popular Data Science Techniques/12. Real Life Examples of Machine Learning (ML).vtt
3.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/12. Multiple-Linear-Regression-with-Dummies-Exercise.ipynb
3.1 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/02. Problems with Gradient Descent.vtt
3.1 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/06. Using a Statistical Approach towards the Solution to the Exercise.vtt
3.1 kB
12. Probability - Distributions/12. Continuous Distributions The Chi-Squared Distribution.vtt
3.1 kB
65. Appendix - pandas Fundamentals/02. A Note on Completing the Upcoming Coding Exercises.html
3.0 kB
29. Python - Iterations/assets/04. Use-Conditional-Statements-and-Loops-Together-Solution-Py3.ipynb
3.0 kB
44. Deep Learning - Introduction to Neural Networks/09. Common Objective Functions L2-norm Loss.vtt
3.0 kB
40. ChatGPT for Data Science/assets/04. patients.csv
3.0 kB
28. Python - Sequences/assets/05. Dictionaries-Exercise-Py3.ipynb
3.0 kB
36. Advanced Statistical Methods - Logistic Regression/assets/05. Building-a-Logistic-Regression-Exercise.ipynb
3.0 kB
28. Python - Sequences/assets/04. Tuples-Lecture-Py3.ipynb
3.0 kB
12. Probability - Distributions/04. Discrete Distributions The Uniform Distribution.vtt
3.0 kB
42. Part 6 Mathematics/assets/08. Tranpose-of-a-matrix.ipynb
3.0 kB
29. Python - Iterations/assets/06. Iterating-over-Dictionaries-Solution-Py3.ipynb
2.9 kB
51. Deep Learning - Preprocessing/04. Preprocessing Categorical Data.vtt
2.9 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/05. What's Regression Analysis - a Quick Refresher.html
2.9 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/07. MNIST Batching and Early Stopping.vtt
2.9 kB
48. Deep Learning - Overfitting/02. Underfitting and Overfitting for Classification.vtt
2.9 kB
28. Python - Sequences/assets/02. Help-Yourself-with-Methods-Solution-Py3.ipynb
2.9 kB
44. Deep Learning - Introduction to Neural Networks/05. The Linear Model with Multiple Inputs.vtt
2.9 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/02. Multiple-linear-regression-and-Adjusted-R-squared-with-comments.ipynb
2.9 kB
28. Python - Sequences/assets/03. List-Slicing-Exercise-Py3.ipynb
2.9 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/06. Simple-Linear-Regression-Exercise.ipynb
2.8 kB
11. Probability - Bayesian Inference/05. Mutually Exclusive Sets.vtt
2.8 kB
40. ChatGPT for Data Science/13. Marvels comic book database Intro to Regular Expressions (RegEx).vtt
2.8 kB
42. Part 6 Mathematics/07. Errors when Adding Matrices.vtt
2.8 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/10. Business Case Testing the Model.vtt
2.8 kB
28. Python - Sequences/assets/01. Lists-Lecture-Py3.ipynb
2.8 kB
54. Deep Learning - Conclusion/02. What's Further out there in terms of Machine Learning.vtt
2.8 kB
44. Deep Learning - Introduction to Neural Networks/07. Graphical Representation of Simple Neural Networks.vtt
2.8 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/32. Final Remarks of this Section.vtt
2.7 kB
11. Probability - Bayesian Inference/09. The Additive Rule.vtt
2.7 kB
40. ChatGPT for Data Science/assets/10. properties.csv
2.7 kB
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/01. What is a Layer.vtt
2.7 kB
27. Python - Python Functions/01. Defining a Function in Python.vtt
2.7 kB
24. Python - Basic Python Syntax/assets/01. Arithmetic-Operators-Exercise-Py3.ipynb
2.7 kB
23. Python - Variables and Data Types/assets/03. Strings-Exercise-Py3.ipynb
2.7 kB
57. Appendix Deep Learning - TensorFlow 1 Business Case/02. Business Case Outlining the Solution.vtt
2.7 kB
11. Probability - Bayesian Inference/03. Intersection of Sets.vtt
2.7 kB
25. Python - Other Python Operators/01. Comparison Operators.vtt
2.6 kB
12. Probability - Distributions/03. Characteristics of Discrete Distributions.vtt
2.6 kB
36. Advanced Statistical Methods - Logistic Regression/assets/10. 2.02.Binary-predictors.csv
2.6 kB
36. Advanced Statistical Methods - Logistic Regression/assets/11. Binary-Predictors-in-a-Logistic-Regression-Exercise.ipynb
2.6 kB
25. Python - Other Python Operators/assets/01. Comparison-Operators-Lecture-Py3.ipynb
2.6 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/06. A1 Linearity.vtt
2.5 kB
36. Advanced Statistical Methods - Logistic Regression/assets/04. Admittance-regression-summary-error.ipynb
2.5 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/01. What to Expect from the Following Sections.html
2.5 kB
29. Python - Iterations/05. Conditional Statements, Functions, and Loops.vtt
2.5 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/04. Test for Significance of the Model (F-Test).vtt
2.5 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/03. Multiple-Linear-Regression-Exercise.ipynb
2.5 kB
40. ChatGPT for Data Science/03. How ChatGPT can boost your productivity.vtt
2.5 kB
36. Advanced Statistical Methods - Logistic Regression/assets/10. Binary-predictors.ipynb
2.5 kB
25. Python - Other Python Operators/assets/01. Comparison-Operators-Solution-Py3.ipynb
2.5 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/15. iris-dataset.csv
2.5 kB
38. Advanced Statistical Methods - K-Means Clustering/assets/14. iris-dataset.csv
2.5 kB
26. Python - Conditional Statements/assets/03. Else-If-for-Brief-Elif-Solution-Py3.ipynb
2.5 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/03. real-estate-price-size-year.csv
2.4 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/17. real-estate-price-size-year.csv
2.4 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/13. real-estate-price-size-year.csv
2.4 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/14. Dropping a Dummy Variable from the Data Set.html
2.4 kB
05. The Field of Data Science - Popular Data Science Techniques/02. Real Life Examples of Traditional Data.vtt
2.4 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/05. Actual Introduction to TensorFlow.vtt
2.4 kB
31. Part 5 Advanced Statistical Methods in Python/01. Introduction to Regression Analysis.vtt
2.4 kB
24. Python - Basic Python Syntax/07. Structuring with Indentation.vtt
2.4 kB
38. Advanced Statistical Methods - K-Means Clustering/10. Relationship between Clustering and Regression.vtt
2.3 kB
20. Statistics - Hypothesis Testing/02. Further Reading on Null and Alternative Hypothesis.html
2.3 kB
23. Python - Variables and Data Types/assets/02. Numbers-and-Boolean-Values-Exercise-Py3.ipynb
2.3 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/03. A Note on Installing Packages in Anaconda.html
2.3 kB
44. Deep Learning - Introduction to Neural Networks/08. What is the Objective Function.vtt
2.3 kB
05. The Field of Data Science - Popular Data Science Techniques/06. Real Life Examples of Business Intelligence (BI).vtt
2.3 kB
29. Python - Iterations/assets/03. Create-Lists-with-the-range-Function-Solution-Py3.ipynb
2.3 kB
50. Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/05. Learning Rate Schedules Visualized.vtt
2.3 kB
23. Python - Variables and Data Types/assets/01. Variables-Exercise-Py3.ipynb
2.3 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/11. MNIST Solutions.html
2.3 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/03. MNIST Relevant Packages.vtt
2.2 kB
26. Python - Conditional Statements/assets/01. Introduction-to-the-If-Statement-Solution-Py3.ipynb
2.2 kB
29. Python - Iterations/assets/06. Iterating-over-Dictionaries-Exercise-Py3.ipynb
2.2 kB
24. Python - Basic Python Syntax/assets/06. Indexing-Elements-Solution-Py3.ipynb
2.2 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/02. Correlation vs Regression.vtt
2.2 kB
56. Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/10. MNIST Exercises.html
2.2 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/02. Multiple-linear-regression-and-Adjusted-R-squared.ipynb
2.2 kB
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/14. ARTICLE - A Note on 'pickling'.html
2.2 kB
53. Deep Learning - Business Case Example/11. Business Case Testing the Model.vtt
2.2 kB
28. Python - Sequences/assets/01. Lists-Exercise-Py3.ipynb
2.2 kB
42. Part 6 Mathematics/assets/09. Dot-product.ipynb
2.2 kB
24. Python - Basic Python Syntax/assets/03. Reassign-Values-Solution-Py3.ipynb
2.2 kB
63. Case Study - Analyzing the Predicted Outputs in Tableau/assets/02. Absenteeism-predictions.csv
2.2 kB
63. Case Study - Analyzing the Predicted Outputs in Tableau/assets/01. Absenteeism-predictions.csv
2.2 kB
27. Python - Python Functions/04. How to Use a Function within a Function.vtt
2.1 kB
29. Python - Iterations/assets/04. Use-Conditional-Statements-and-Loops-Together-Exercise-Py3.ipynb
2.1 kB
36. Advanced Statistical Methods - Logistic Regression/assets/04. Admittance-regression.ipynb
2.1 kB
40. ChatGPT for Data Science/assets/12. students.csv
2.1 kB
17. Statistics - Inferential Statistics Fundamentals/07. Standard error.vtt
2.1 kB
42. Part 6 Mathematics/assets/05. Tensors.ipynb
2.1 kB
28. Python - Sequences/assets/04. Tuples-Exercise-Py3.ipynb
2.1 kB
40. ChatGPT for Data Science/02. How to install ChatGPT.vtt
2.1 kB
18. Statistics - Inferential Statistics Confidence Intervals/15. Confidence intervals. Two means. Independent Samples (Part 3).vtt
2.1 kB
27. Python - Python Functions/assets/03. Another-Way-to-Define-a-Function-Solution-Py3.ipynb
2.0 kB
52. Deep Learning - Classifying on the MNIST Dataset/11. MNIST - Exercises.html
2.0 kB
29. Python - Iterations/assets/04. Use-Conditional-Statements-and-Loops-Together-Lecture-Py3.ipynb
2.0 kB
24. Python - Basic Python Syntax/04. Add Comments.vtt
2.0 kB
28. Python - Sequences/assets/02. Help-Yourself-with-Methods-Exercise-Py3.ipynb
2.0 kB
53. Deep Learning - Business Case Example/02. Business Case Outlining the Solution.vtt
2.0 kB
24. Python - Basic Python Syntax/02. The Double Equality Sign.vtt
1.9 kB
29. Python - Iterations/assets/05. All-In-Solution-Py3.ipynb
1.9 kB
05. The Field of Data Science - Popular Data Science Techniques/04. Real Life Examples of Big Data.vtt
1.9 kB
62. Case Study - Loading the 'absenteeism_module'/assets/01. Absenteeism-new-data.csv
1.9 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/20. Reordering Columns in a Pandas DataFrame in Python.vtt
1.9 kB
62. Case Study - Loading the 'absenteeism_module'/assets/01. scaler
1.9 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/06. real-estate-price-size.csv
1.9 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/06. real-estate-price-size.csv
1.9 kB
51. Deep Learning - Preprocessing/02. Types of Basic Preprocessing.vtt
1.9 kB
36. Advanced Statistical Methods - Logistic Regression/01. Introduction to Logistic Regression.vtt
1.9 kB
39. Advanced Statistical Methods - Other Types of Clustering/assets/03. Heatmaps.ipynb
1.9 kB
29. Python - Iterations/assets/01. For-Loops-Solution-Py3.ipynb
1.8 kB
27. Python - Python Functions/assets/02. Creating-a-Function-with-a-Parameter-Solution-Py3.ipynb
1.8 kB
40. ChatGPT for Data Science/assets/06. products.csv
1.8 kB
26. Python - Conditional Statements/assets/02. Add-an-Else-Statement-Lecture-Py3.ipynb
1.8 kB
26. Python - Conditional Statements/assets/03. Else-If-for-Brief-Elif-Exercise-Py3.ipynb
1.8 kB
29. Python - Iterations/assets/02. While-Loops-and-Incrementing-Solution-Py3.ipynb
1.8 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/03. Geometrical Representation of the Linear Regression Model.vtt
1.8 kB
27. Python - Python Functions/assets/06. Creating-Functions-Containing-a-Few-Arguments-Lecture-Py3.ipynb
1.8 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/15. More on Dummy Variables A Statistical Perspective.vtt
1.7 kB
24. Python - Basic Python Syntax/assets/03. Reassign-Values-Exercise-Py3.ipynb
1.7 kB
17. Statistics - Inferential Statistics Fundamentals/01. Introduction.vtt
1.7 kB
24. Python - Basic Python Syntax/06. Indexing Elements.vtt
1.7 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/05. Basic NN Example Exercises.html
1.7 kB
46. Deep Learning - TensorFlow 2.0 Introduction/assets/05. TensorFlow-Minimal-example-Part1.ipynb
1.7 kB
27. Python - Python Functions/assets/05. Combining-Conditional-Statements-and-Functions-Solution-Py3.ipynb
1.7 kB
40. ChatGPT for Data Science/11. Assignment 1.html
1.7 kB
29. Python - Iterations/assets/05. All-In-Lecture-Py3.ipynb
1.7 kB
25. Python - Other Python Operators/assets/01. Comparison-Operators-Exercise-Py3.ipynb
1.6 kB
55. Appendix Deep Learning - TensorFlow 1 Introduction/10. Basic NN Example with TF Exercises.html
1.6 kB
27. Python - Python Functions/assets/04. 0.6.4-Using-a-Function-in-another-Function-Solution-Py3.ipynb
1.6 kB
27. Python - Python Functions/assets/02. Creating-a-Function-with-a-Parameter-Lecture-Py3.ipynb
1.6 kB
36. Advanced Statistical Methods - Logistic Regression/assets/02. 2.01.Admittance.csv
1.6 kB
40. ChatGPT for Data Science/assets/06. customers.csv
1.6 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/07. Using Seaborn for Graphs.vtt
1.6 kB
40. ChatGPT for Data Science/15. Assignment 2.html
1.6 kB
26. Python - Conditional Statements/assets/01. Introduction-to-the-If-Statement-Exercise-Py3.ipynb
1.6 kB
24. Python - Basic Python Syntax/assets/05. Line-Continuation-Solution-Py3.ipynb
1.5 kB
24. Python - Basic Python Syntax/assets/07. Structure-Your-Code-with-Indentation-Solution-Py3.ipynb
1.5 kB
10. Probability - Combinatorics/01. Fundamentals of Combinatorics.vtt
1.5 kB
30. Python - Advanced Python Tools/02. Modules and Packages.vtt
1.5 kB
29. Python - Iterations/assets/03. Create-Lists-with-the-range-Function-Exercise-Py3.ipynb
1.5 kB
24. Python - Basic Python Syntax/assets/02. The-Double-Equality-Sign-Lecture-Py3.ipynb
1.5 kB
27. Python - Python Functions/06. Functions Containing a Few Arguments.vtt
1.5 kB
46. Deep Learning - TensorFlow 2.0 Introduction/04. A Note on TensorFlow 2 Syntax.vtt
1.5 kB
26. Python - Conditional Statements/assets/02. Add-an-Else-Statement-Solution-Py3.ipynb
1.4 kB
24. Python - Basic Python Syntax/assets/06. Indexing-Elements-Exercise-Py3.ipynb
1.4 kB
29. Python - Iterations/assets/03. Create-Lists-with-the-range-Function-Lecture-Py3.ipynb
1.4 kB
32. Advanced Statistical Methods - Linear Regression with StatsModels/06. First Regression in Python Exercise.html
1.4 kB
24. Python - Basic Python Syntax/03. How to Reassign Values.vtt
1.4 kB
24. Python - Basic Python Syntax/assets/06. Indexing-Elements-Lecture-Py3.ipynb
1.3 kB
29. Python - Iterations/assets/05. All-In-Exercise-Py3.ipynb
1.3 kB
46. Deep Learning - TensorFlow 2.0 Introduction/09. Basic NN with TensorFlow Exercises.html
1.3 kB
27. Python - Python Functions/assets/05. Combining-Conditional-Statements-and-Functions-Lecture-Py3.ipynb
1.3 kB
29. Python - Iterations/assets/01. For-Loops-Exercise-Py3.ipynb
1.3 kB
29. Python - Iterations/assets/01. For-Loops-Lecture-Py3.ipynb
1.3 kB
27. Python - Python Functions/assets/03. Another-Way-to-Define-a-Function-Exercise-Py3.ipynb
1.3 kB
60. Case Study - Preprocessing the 'Absenteeism_data'/29. EXERCISE - Removing the Date Column.html
1.2 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/11. 1.03.Dummies.csv
1.2 kB
45. Deep Learning - How to Build a Neural Network from Scratch with NumPy/assets/01. Minimal-example-Part-1.ipynb
1.2 kB
27. Python - Python Functions/assets/02. Creating-a-Function-with-a-Parameter-Exercise-Py3.ipynb
1.2 kB
24. Python - Basic Python Syntax/05. Understanding Line Continuation.vtt
1.2 kB
26. Python - Conditional Statements/assets/01. Introduction-to-the-If-Statement-Lecture-Py3.ipynb
1.2 kB
24. Python - Basic Python Syntax/assets/02. The-Double-Equality-Sign-Solution-Py3.ipynb
1.2 kB
24. Python - Basic Python Syntax/assets/05. Line-Continuation-Exercise-Py3.ipynb
1.2 kB
29. Python - Iterations/assets/02. While-Loops-and-Incrementing-Exercise-Py3.ipynb
1.1 kB
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/assets/02. 1.02.Multiple-linear-regression.csv
1.1 kB
29. Python - Iterations/assets/02. While-Loops-and-Incrementing-Lecture-Py3.ipynb
1.1 kB
29. Python - Iterations/assets/06. Iterating-over-Dictionaries-Lecture-Py3.ipynb
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/09. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/07. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/14. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/16. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/15. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/08. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/12. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/10. 1.02.Multiple-linear-regression.csv
1.1 kB
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/11. 1.02.Multiple-linear-regression.csv
1.1 kB
27. Python - Python Functions/assets/05. Combining-Conditional-Statements-and-Functions-Exercise-Py3.ipynb
1.1 kB
54. Deep Learning - Conclusion/03. DeepMind and Deep Learning.html
1.1 kB
27. Python - Python Functions/assets/04. 0.6.4-Using-a-Function-in-another-Function-Exercise-Py3.ipynb
1.1 kB
24. Python - Basic Python Syntax/assets/04. Add-Comments-Lecture-Py3.ipynb
1.1 kB
26. Python - Conditional Statements/assets/02. Add-an-Else-Statement-Exercise-Py3.ipynb
1.0 kB
62. Case Study - Loading the 'absenteeism_module'/assets/01. model
1.0 kB
27. Python - Python Functions/assets/04. 0.6.4-Using-a-Function-in-another-Function-Lecture-Py3.ipynb
1.0 kB
62. Case Study - Loading the 'absenteeism_module'/04. Exporting the Obtained Data Set as a .csv.html
998 Bytes
62. Case Study - Loading the 'absenteeism_module'/assets/04. Absenteeism-Exercise-Deploying-the-absenteeism-module.ipynb
973 Bytes
24. Python - Basic Python Syntax/assets/07. Structure-Your-Code-with-Indentation-Lecture-Py3.ipynb
958 Bytes
24. Python - Basic Python Syntax/assets/07. Structure-Your-Code-with-Indentation-Exercise-Py3.ipynb
956 Bytes
32. Advanced Statistical Methods - Linear Regression with StatsModels/assets/05. 1.01.Simple-linear-regression.csv
922 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/04. 1.01.Simple-linear-regression.csv
922 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/assets/03. 1.01.Simple-linear-regression.csv
922 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/33. A Note on Exporting Your Data as a .csv File.html
883 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/08. EXERCISE - Dropping a Column from a DataFrame in Python.html
870 Bytes
27. Python - Python Functions/assets/01. Defining-a-Function-in-Python-Lecture-Py3.ipynb
868 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/03. A Note on Multicollinearity.html
849 Bytes
24. Python - Basic Python Syntax/assets/02. The-Double-Equality-Sign-Exercise-Py3.ipynb
838 Bytes
26. Python - Conditional Statements/assets/04. A-Note-on-Boolean-Values-Lecture-Py3.ipynb
791 Bytes
24. Python - Basic Python Syntax/assets/05. Line-Continuation-Lecture-Py3.ipynb
779 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/05. A Note on Normalization.html
733 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/07. Dummy Variables - Exercise.html
713 Bytes
55. Appendix Deep Learning - TensorFlow 1 Introduction/01. READ ME!!!!.html
564 Bytes
63. Case Study - Analyzing the Predicted Outputs in Tableau/05. EXERCISE - Transportation Expense vs Probability.html
553 Bytes
47. Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/09. Backpropagation - A Peek into the Mathematics of Optimization.html
543 Bytes
15. Statistics - Descriptive Statistics/16. Variance Exercise.html
522 Bytes
62. Case Study - Loading the 'absenteeism_module'/01. Are You Sure You're All Set.html
519 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/09. Linear Regression - Exercise.html
503 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/22. SOLUTION - Reordering Columns in a Pandas DataFrame in Python.html
478 Bytes
57. Appendix Deep Learning - TensorFlow 1 Business Case/12. Business Case Final Exercise.html
443 Bytes
53. Deep Learning - Business Case Example/12. Business Case Final Exercise.html
433 Bytes
63. Case Study - Analyzing the Predicted Outputs in Tableau/03. EXERCISE - Reasons vs Probability.html
397 Bytes
57. Appendix Deep Learning - TensorFlow 1 Business Case/05. Business Case Preprocessing Exercise.html
389 Bytes
63. Case Study - Analyzing the Predicted Outputs in Tableau/01. EXERCISE - Age vs Probability.html
385 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/11. A Note on Calculation of P-values with sklearn.html
372 Bytes
53. Deep Learning - Business Case Example/05. Business Case Preprocessing the Data - Exercise.html
370 Bytes
36. Advanced Statistical Methods - Logistic Regression/assets/15. 2.03.Test-dataset.csv
322 Bytes
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/15. EXERCISE - Saving the Model (and Scaler).html
284 Bytes
38. Advanced Statistical Methods - K-Means Clustering/assets/11. 3.12.Example.csv
283 Bytes
39. Advanced Statistical Methods - Other Types of Clustering/assets/03. Country-clusters-standardized.csv
244 Bytes
38. Advanced Statistical Methods - K-Means Clustering/assets/02. 3.01.Country-clusters.csv
200 Bytes
53. Deep Learning - Business Case Example/10. Setting an Early Stopping Mechanism - Exercise.html
192 Bytes
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-links/11. Logistic-Regression-prior-to-Backward-Elimination.url
191 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/18. EXERCISE - Using .concat() in Python.html
189 Bytes
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-links/09. Logistic-Regression-prior-to-Custom-Scaler.url
184 Bytes
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-links/15. Logistic-Regression-with-Comments.url
175 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/21. EXERCISE - Reordering Columns in a Pandas DataFrame in Python.html
167 Bytes
61. Case Study - Applying Machine Learning to Create the 'absenteeism_module'/external-links/15. Logistic-Regression.url
161 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/19. SOLUTION - Using .concat() in Python.html
143 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/24. EXERCISE - Creating Checkpoints while Coding in Jupyter.html
137 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/12. EXERCISE - Obtaining Dummies from a Single Feature.html
129 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/25. SOLUTION - Creating Checkpoints while Coding in Jupyter.html
118 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/13. SOLUTION - Obtaining Dummies from a Single Feature.html
117 Bytes
60. Case Study - Preprocessing the 'Absenteeism_data'/09. SOLUTION - Dropping a Column from a DataFrame in Python.html
114 Bytes
01. Part 1 Introduction/external-links/03. Download-all-resources.url
99 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/external-links/04. sklearn-Linear-Regression-Practical-Example-Part-3-.url
99 Bytes
40. ChatGPT for Data Science/assets/05. diagnosis-mapping.csv
90 Bytes
36. Advanced Statistical Methods - Logistic Regression/05. Building a Logistic Regression - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/11. Binary Predictors in a Logistic Regression - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/13. Calculating the Accuracy of the Model.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/08. Understanding Logistic Regression Tables - Exercise.html
87 Bytes
36. Advanced Statistical Methods - Logistic Regression/16. Testing the Model - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/05. Clustering Categorical Data - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/03. A Simple Example of Clustering - Exercise.html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/14. EXERCISE Species Segmentation with Cluster Analysis (Part 1).html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/15. EXERCISE Species Segmentation with Cluster Analysis (Part 2).html
87 Bytes
38. Advanced Statistical Methods - K-Means Clustering/07. How to Choose the Number of Clusters - Exercise.html
87 Bytes
42. Part 6 Mathematics/external-links/01. Math-Flashcards.url
87 Bytes
15. Statistics - Descriptive Statistics/04. Categorical Variables Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/18. Standard Deviation and Coefficient of Variation Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/06. Numerical Variables Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/10. Cross Tables and Scatter Plots Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/14. Skewness Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/20. Covariance Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/08. Histogram Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/12. Mean, Median and Mode Exercise.html
81 Bytes
15. Statistics - Descriptive Statistics/22. Correlation Coefficient Exercise.html
81 Bytes
16. Statistics - Practical Example Descriptive Statistics/02. Practical Example Descriptive Statistics Exercise.html
81 Bytes
17. Statistics - Inferential Statistics Fundamentals/05. The Standard Normal Distribution Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/03. Confidence Intervals; Population Variance Known; Z-score; Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/14. Confidence intervals. Two means. Independent Samples (Part 2). Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/07. Confidence Intervals; Population Variance Unknown; T-score; Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/10. Confidence intervals. Two means. Dependent samples Exercise.html
81 Bytes
18. Statistics - Inferential Statistics Confidence Intervals/12. Confidence intervals. Two means. Independent Samples (Part 1). Exercise.html
81 Bytes
19. Statistics - Practical Example Inferential Statistics/02. Practical Example Inferential Statistics Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/13. Test for the mean. Independent Samples (Part 1). Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/09. Test for the Mean. Population Variance Unknown Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/06. Test for the Mean. Population Variance Known Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/15. Test for the mean. Independent Samples (Part 2). Exercise.html
81 Bytes
20. Statistics - Hypothesis Testing/11. Test for the Mean. Dependent Samples Exercise.html
81 Bytes
21. Statistics - Practical Example Hypothesis Testing/02. Practical Example Hypothesis Testing Exercise.html
81 Bytes
52. Deep Learning - Classifying on the MNIST Dataset/07. MNIST Preprocess the Data - Shuffle and Batch - Exercise.html
79 Bytes
52. Deep Learning - Classifying on the MNIST Dataset/05. MNIST Preprocess the Data - Scale the Test Data - Exercise.html
79 Bytes
53. Deep Learning - Business Case Example/07. Business Case Load the Preprocessed Data - Exercise.html
79 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/03. Multiple Linear Regression Exercise.html
76 Bytes
33. Advanced Statistical Methods - Multiple Linear Regression with StatsModels/12. Dealing with Categorical Data - Dummy Variables.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/06. Simple Linear Regression with sklearn - Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/09. Calculating the Adjusted R-Squared in sklearn - Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/13. Multiple Linear Regression - Exercise.html
76 Bytes
34. Advanced Statistical Methods - Linear Regression with sklearn/17. Feature Scaling (Standardization) - Exercise.html
76 Bytes
35. Advanced Statistical Methods - Practical Example Linear Regression/05. Dummies and Variance Inflation Factor - Exercise.html
76 Bytes
14. Part 3 Statistics/external-links/01. Statistics-Flashcards.url
51 Bytes
09. Part 2 Probability/external-links/01. Probability-Flashcards.url
46 Bytes
02. The Field of Data Science - The Various Data Science Disciplines/external-links/02. Intro-to-Data-Science-Flashcards.url
44 Bytes
02. The Field of Data Science - The Various Data Science Disciplines/external-links/01. Intro-to-Data-Science-Flashcards.url
44 Bytes
22. Part 4 Introduction to Python/external-links/01. Intro-to-Python-Flashcards.url
44 Bytes
31. Part 5 Advanced Statistical Methods in Python/external-links/01. Advanced-Statistics-Flashcards.url
44 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>