搜索
[FreeCoursesOnline.Me] UDACITY - Deep Learning v4.0.0
磁力链接/BT种子名称
[FreeCoursesOnline.Me] UDACITY - Deep Learning v4.0.0
磁力链接/BT种子简介
种子哈希:
3669f698774fb79e5cdec0e81cb92cedd4d5d008
文件大小:
3.32G
已经下载:
1954
次
下载速度:
极快
收录时间:
2021-03-18
最近下载:
2025-05-30
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:3669F698774FB79E5CDEC0E81CB92CEDD4D5D008
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
硬壳探花
不伦
水满满
linux
apprentice
爱生
二人
the bridges of madison county yts
nanx
巨环
文职
嫌
过瘾
会场
無 流出
啵
submission
潮喷
瓜
巨大屌
约熟
宝宝甜
学生门
神操作
水上综艺
完完子
抖音
獣専用肉便器
茜
妻家
文件列表
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.mp4
57.2 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.mp4
52.7 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.mp4
50.7 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.mp4
45.7 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.mp4
41.3 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.mp4
41.0 MB
Part 01-Module 01-Lesson 03_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4
40.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4
38.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4
37.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4
36.5 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4
35.3 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.mp4
35.0 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.mp4
34.8 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.mp4
34.1 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.mp4
31.9 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.mp4
31.6 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.mp4
30.3 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.mp4
30.1 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.mp4
28.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.mp4
27.9 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4
27.0 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.mp4
26.9 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.mp4
26.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4
25.4 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.mp4
24.9 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.mp4
24.5 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.mp4
24.2 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.mp4
23.4 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4
23.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.mp4
23.1 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.mp4
23.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4
22.6 MB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.mp4
22.6 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4
22.4 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.mp4
22.1 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.mp4
22.0 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.mp4
22.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4
21.9 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.mp4
21.7 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4
21.7 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.mp4
21.2 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.mp4
21.1 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.mp4
21.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4
20.6 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.mp4
20.0 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.mp4
19.8 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4
19.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4
19.0 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.mp4
18.8 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4
18.6 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Aplicações de CNNs-HrYNL_1SV2Y.mp4
18.6 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.mp4
18.5 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4
18.3 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.mp4
18.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4
18.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4
18.1 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Camadas convolucionais-RnM1D-XI--8.mp4
17.9 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.mp4
17.8 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.mp4
17.7 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.mp4
17.5 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.mp4
17.3 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.mp4
16.8 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.mp4
16.7 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.mp4
16.6 MB
Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4
16.4 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.mp4
16.4 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4
15.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.mp4
15.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.mp4
15.0 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.mp4
14.8 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4
14.3 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4
14.1 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4
14.0 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.mp4
13.9 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4
13.6 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4
13.4 MB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4
13.3 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4
13.3 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.mp4
13.3 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.mp4
13.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4
13.1 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4
12.6 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.mp4
12.6 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.mp4
12.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.mp4
12.2 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4
11.8 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4
11.8 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.mp4
11.8 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.mp4
11.8 MB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.mp4
11.6 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.mp4
11.6 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.mp4
11.6 MB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.mp4
11.3 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4
11.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4
11.2 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4
11.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4
11.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4
10.9 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.mp4
10.9 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4
10.9 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.mp4
10.8 MB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.mp4
10.8 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4
10.8 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4
10.8 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.mp4
10.7 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.mp4
10.6 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4
10.6 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4
10.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.mp4
10.4 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.mp4
10.4 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.mp4
10.3 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.mp4
10.2 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.mp4
10.1 MB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4
10.1 MB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.mp4
10.0 MB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.mp4
9.9 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.mp4
9.7 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.mp4
9.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizando CNNs-mnqS_EhEZVg.mp4
9.6 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.mp4
9.5 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4
9.5 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4
9.5 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.mp4
9.4 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.mp4
9.3 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.mp4
9.3 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.mp4
9.3 MB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.mp4
9.2 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4
9.1 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4
9.1 MB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4
9.0 MB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.mp4
8.9 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. M1 L1 C05 V3 No Slack-OH-fVUpoyZDyGE.mp4
8.8 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.mp4
8.8 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.mp4
8.7 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.mp4
8.7 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.mp4
8.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.mp4
8.6 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.mp4
8.5 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.mp4
8.5 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4
8.5 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.mp4
8.5 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4
8.4 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4
8.4 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4
8.4 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.mp4
8.2 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.mp4
8.1 MB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.mp4
8.1 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.mp4
8.1 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.mp4
8.0 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4
8.0 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4
7.9 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/chess-game.jpg
7.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4
7.9 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.mp4
7.8 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.mp4
7.7 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4
7.7 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.mp4
7.7 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.mp4
7.6 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.mp4
7.6 MB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.mp4
7.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4
7.6 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.mp4
7.6 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4
7.5 MB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4
7.5 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.mp4
7.5 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.mp4
7.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.mp4
7.4 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.mp4
7.3 MB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.mp4
7.3 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.mp4
7.3 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.mp4
7.2 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4
7.2 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4
7.2 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.mp4
7.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.mp4
7.0 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.mp4
7.0 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.mp4
7.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4
6.9 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.mp4
6.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4
6.8 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4
6.7 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.mp4
6.6 MB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.mp4
6.5 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.mp4
6.5 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4
6.5 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.mp4
6.4 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4
6.4 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. M0 L3 C01 Intro- V3 No Slack-OH-5IlSH-eoPAU.mp4
6.4 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.mp4
6.3 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4
6.2 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4
6.2 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.mp4
6.1 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4
6.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4
6.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4
6.0 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4
5.8 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.mp4
5.8 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.mp4
5.7 MB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.mp4
5.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4
5.7 MB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/img/carnd.jpg
5.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4
5.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4
5.6 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.mp4
5.5 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4
5.5 MB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.mp4
5.4 MB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.mp4
5.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4
5.4 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.mp4
5.3 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
5.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4
5.3 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.mp4
5.3 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.mp4
5.2 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.mp4
5.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.mp4
5.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4
5.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4
5.1 MB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4
5.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4
5.0 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.mp4
5.0 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.mp4
4.9 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.mp4
4.9 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.mp4
4.6 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4
4.6 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.mp4
4.6 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.mp4
4.5 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.mp4
4.5 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.mp4
4.5 MB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4
4.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4
4.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.mp4
4.4 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4
4.4 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.mp4
4.4 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.mp4
4.4 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.mp4
4.3 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4
4.3 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.mp4
4.3 MB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4
4.3 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.mp4
4.3 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4
4.2 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.mp4
4.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4
4.2 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.mp4
4.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4
4.1 MB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4
4.1 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.mp4
4.1 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.mp4
4.1 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.mp4
4.0 MB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4
4.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4
3.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4
3.8 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.mp4
3.8 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.mp4
3.7 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4
3.7 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png
3.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4
3.6 MB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.mp4
3.6 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.mp4
3.6 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4
3.6 MB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4
3.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4
3.5 MB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.mp4
3.4 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.mp4
3.4 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.mp4
3.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4
3.4 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.mp4
3.3 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4
3.3 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4
3.2 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png
3.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.mp4
3.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4
3.2 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.mp4
3.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4
3.1 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.mp4
3.0 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png
3.0 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.mp4
3.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4
3.0 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.mp4
3.0 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4
3.0 MB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4
3.0 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4
3.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4
3.0 MB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-agent-monitor-main.gif
2.9 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 08 AND And OR Perceptrons-Y-ImuxNpS40.mp4
2.9 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.mp4
2.8 MB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.mp4
2.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4
2.7 MB
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.mp4
2.7 MB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4
2.7 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4
2.6 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-1.29.13-pm.png
2.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.mp4
2.5 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.mp4
2.5 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.mp4
2.5 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4
2.4 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4
2.4 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.mp4
2.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.mp4
2.4 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.mp4
2.3 MB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.mp4
2.3 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.mp4
2.3 MB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4
2.3 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.mp4
2.3 MB
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.mp4
2.3 MB
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.mp4
2.3 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.mp4
2.3 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4
2.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4
2.2 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.mp4
2.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4
2.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.mp4
2.2 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Apresentando Alexis-38ExGpdyvJI.mp4
2.2 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4
2.1 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.mp4
2.1 MB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/run-main.gif
2.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4
2.1 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4
2.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4
2.0 MB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.mp4
1.9 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4
1.8 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.mp4
1.8 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4
1.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/skin-disease-classes.png
1.7 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.mp4
1.7 MB
Part 05-Module 01-Lesson 03_Generate Faces/02. 项目简介-jvJtHYBX7sM.mp4
1.7 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.mp4
1.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4
1.7 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4
1.7 MB
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.mp4
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/lesions.png
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.mp4
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.mp4
1.6 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4
1.6 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/frozen-lake-6.jpg
1.6 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4
1.6 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.mp4
1.6 MB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4
1.6 MB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4
1.5 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.mp4
1.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4
1.5 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.mp4
1.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4
1.4 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4
1.4 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.mp4
1.3 MB
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.mp4
1.3 MB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/arch.png
1.3 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.mp4
1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4
1.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4
1.2 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4
1.2 MB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.mp4
1.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.31.11-pm.png
1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.mp4
1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4
1.2 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-11-at-2.04.14-pm.png
1.2 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4
1.2 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.mp4
1.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-10.43.49-pm.png
1.1 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.mp4
1.1 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.mp4
1.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.12.31-am.png
1.1 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.16.19-am.png
1.1 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4
1.1 MB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4
1.0 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/statevalue.png
1.0 MB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4
1.0 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.mp4
1.0 MB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.mp4
1.0 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.14.30-am.png
1.0 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4
949.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-10-at-9.12.16-pm.png
919.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/nature.png
914.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4
909.9 kB
img/dl-classroom-1200x900.jpg
896.3 kB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4
894.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.13-pm.png
892.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4
883.2 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/img/chi-waves.png
843.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4
839.5 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-terminal.gif
838.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.52-pm.png
826.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.49.20-pm.png
776.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png
767.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-4.58.58-pm.png
733.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-2.04.54-pm.png
713.1 kB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4
709.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.mp4
693.2 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.mp4
683.2 kB
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4
676.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/actionvalue.png
643.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-24-at-4.28.04-pm.png
637.6 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/go.jpg
629.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png
620.7 kB
Part 01-Module 01-Lesson 02_Anaconda/media/conda_default_install.mp4
609.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-3.png
589.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.mp4
587.6 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/submit-workspace.png
559.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.51.44-pm.png
531.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. DL 09 XOR Perceptron--z9K49fdE3g.mp4
524.1 kB
Part 08-Module 01-Lesson 02_Regression/img/house.png
503.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-21-at-15.43.05.png
493.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.10.02-pm.png
489.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png
482.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/examples.jpg
480.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/threshold.png
479.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-08-31-at-3.27.10-pm.png
474.2 kB
assets/img/udacimak.png
472.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/quadcopter.png
466.6 kB
Part 01-Module 01-Lesson 02_Anaconda/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png
453.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.38.24-am.png
451.5 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-search.png
441.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/study-group.png
425.2 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.55.20-am.png
424.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-2.18.38-pm.png
415.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Images-1GdiN5Wc8LA.mp4
404.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4
404.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png
403.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.22-am.png
395.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/value-iteration.png
390.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.46.35-pm.png
375.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-action.png
372.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/review-example.png
371.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.27.51-pm.png
371.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-1.40.14-pm.png
369.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-state.png
356.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.34.41-pm.png
355.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/generated-mnist.png
354.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.08.28-pm.png
342.6 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-12-17-at-12.49.34-pm.png
340.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/Markdown+cells.mp4
338.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/boston-back-bay-reflection.jpg
325.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-08-at-3.43.34-pm.png
324.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/td-prediction.png
318.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/confusion-matrix.png
318.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/img/atari-network.png
317.4 kB
Part 02-Module 01-Lesson 07_Keras/img/all-ranks.png
315.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-26-at-19.28.34.png
304.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-glie.png
304.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsa.png
293.7 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/layers.png
293.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.38.03-am.png
282.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-constant-a.png
281.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-iter.png
280.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-5.01.26-pm.png
278.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-10.54.50-am.png
276.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png
272.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsamax.png
270.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4
266.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/policy-eval.png
265.9 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-11.03.16-pm.png
265.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png
265.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2018-06-12-at-5.07.10-pm.png
263.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png
261.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/expected-sarsa.png
260.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png
257.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/precision-quiz.png
256.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg
252.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.23.49-pm.png
252.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png
247.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png
247.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/iteration.png
247.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.49.43-pm.png
239.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png
238.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png
238.1 kB
assets/js/katex.min.js
236.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-2.jpeg
236.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-1.jpeg
236.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.58.01-pm.png
235.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png
234.4 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/recall-quiz.png
233.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png
233.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.38.51-pm.png
230.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-eval.png
230.6 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/karpathy-network.png
227.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif
227.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-4.22.09-pm.png
224.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png
224.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/notebook+interface.mp4
220.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png
220.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/multi-layer.png
219.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.50-pm.png
215.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 07_Keras/img/meme.png
214.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/meme.png
214.1 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/meme.png
214.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/meme.png
214.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/exploration-vs.-exploitation.png
209.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.30-pm.png
208.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-21-at-12.20.30-pm.png
208.0 kB
Part 01-Module 01-Lesson 02_Anaconda/media/conda_install.mp4
206.6 kB
Part 08-Module 01-Lesson 02_Regression/img/batch-stochastic.png
201.6 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-06-13-at-12.58.03-pm.png
201.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/media/monkey-doctor.png
194.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/confusion.png
193.4 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/p2-limit-increase.png
192.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/medical.png
191.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/new-confusion-matrix.png
190.6 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/1omsg2-mkguagky1c64uflw.gif
188.4 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/new-tab.gif
185.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/pup.jpg
185.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.44.20-pm.png
185.3 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/img/screen-shot-2017-11-30-at-1.34.44-pm.png
185.0 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/img/mat-headshot.png
184.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/img/mat-headshot.png
184.3 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/img/mat-headshot.png
184.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/mat-headshot.png
184.3 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/img/mat-headshot.png
184.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/mat-headshot.png
184.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/mat-headshot.png
184.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/img/mat-headshot.png
184.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/2-card-21.png
180.1 kB
Part 08-Module 01-Lesson 02_Regression/img/quiz.jpg
178.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/media/input-to-output-2.mp4
176.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/svhn-examples.png
174.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-5.33.53-pm.png
173.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/command+palette.mp4
173.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.09.07-pm.png
168.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.14.45-pm.png
167.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/example-neural-network.png
167.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.49.24-pm.png
163.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-12-17-at-9.41.03-am.png
162.0 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit.png
161.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/precision-recall.png
160.5 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/rnn.png
159.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/server-shutdown.png
159.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sensitivity-specificity.png
158.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.08.03-pm.png
156.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/incremental.png
155.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/est-action.png
154.2 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/email.png
152.1 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/parrot-ar-drone.jpg
150.0 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-submit.png
149.7 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-gpu.png
149.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-10.30.15-am.png
148.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/constant-alpha.png
147.1 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-notebook.png
146.3 kB
index.html
144.7 kB
assets/css/bootstrap.min.css
140.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curves.png
140.6 kB
Part 08-Module 01-Lesson 02_Regression/img/minibatch.png
140.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-07-19-at-5.39.37-pm.png
134.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-confusion-matrix.png
133.7 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/p2xlarge-limit-request.png
132.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.03.45-pm.png
132.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-6.29.49-pm.png
132.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/img/poker-hand-3-of-a-kind.png
131.7 kB
assets/js/plyr.polyfilled.min.js
129.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/improve.png
127.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png
121.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/backgammonboard.svg.png
115.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/linear-relationships.png
115.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.00.15-pm.png
112.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-tab.png
112.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.36.39-pm.png
112.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-17-at-5.38.55-pm.png
110.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/topological-sort.001.jpeg
109.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/amazonwebservices-logo.svg.png
109.7 kB
Part 08-Module 01-Lesson 02_Regression/img/nn.png
108.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/accuracy-quiz.png
108.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-server.png
105.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/article-2278590-1792e332000005dc-394-634x615.jpg
105.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.09.13-pm.png
105.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/new-notebook.png
104.2 kB
Part 01-Module 01-Lesson 02_Anaconda/media/conda_enter.mp4
99.6 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-json.png
97.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.46.43-pm.png
97.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png
96.4 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-menu.png
96.2 kB
Part 02-Module 01-Lesson 07_Keras/img/summary.png
96.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png
95.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png
94.3 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-matplotlib.png
92.9 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png
90.0 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/tensorflow.png
87.3 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-new.png
87.3 kB
assets/js/jquery-3.3.1.min.js
86.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-05-at-3.55.40-pm.png
86.7 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-jupyter.png
85.5 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-install.png
83.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.43.36-pm.png
82.8 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-download.png
81.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.29.14-pm.png
81.2 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png
80.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc.png
80.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-6.02.37-pm.png
80.7 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/img/flappy-bird.jpg
78.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/word-embeddings.jpg
76.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-12-at-5.47.45-pm.png
75.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/img/enable-gpu.png
75.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/nbconvert-example.png
75.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png
73.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-5.54.40-pm.png
73.1 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-create-env.png
72.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/img/notebook.png
71.9 kB
assets/css/fonts/KaTeX_AMS-Regular.ttf
71.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.40.57-pm.png
71.3 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/img/grokking-deep-learning.jpg
71.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/addition-graph.png
70.6 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-pdb.png
70.3 kB
Part 08-Module 01-Lesson 02_Regression/img/just-a-2d-reg.png
70.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.41.08-pm.png
70.1 kB
assets/css/fonts/KaTeX_Main-Regular.ttf
70.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/img/paper-notes.svg.png
69.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.19-pm.png
68.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.35-pm.png
68.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-11.55.58-am.png
66.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-5.51.40-pm.png
66.1 kB
Part 01-Module 01-Lesson 02_Anaconda/img/conda-env-export.png
65.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/convolution-schematic.gif
65.2 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/convolution-schematic.gif
65.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png
64.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/pasted-image-at-2016-10-25-01-17-pm.png
64.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/dropout-node.jpeg
64.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/cross-entropy-diagram.png
64.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-16-at-2.40.57-pm.png
64.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-shutdown.png
63.8 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-cell-toolbar-menu.png
62.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.42.56-am.png
62.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-1.48.59-pm.png
62.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.50.40-am.png
62.5 kB
assets/css/fonts/KaTeX_Main-Bold.ttf
61.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/convolutional-neural-networks-2.jpg
61.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png
60.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.37.27-am.png
60.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-2.46.11-pm.png
60.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.10.56-pm.png
60.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.45.50-pm.png
59.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/w1-backprop-graph.png
58.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.44.11-pm.png
58.2 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-10-17-at-11.02.44-am.png
57.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit2.png
57.5 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/amazon-aws.png
57.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.25.10-pm.png
56.9 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/media/Screen+Shot+2017-01-27+at+11.38.54+AM.png
56.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png
56.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.08.59-pm.png
55.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/notmnist.png
55.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.44.15-pm.png
55.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.06.19-pm.png
54.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-choose-slide-type.png
54.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-9.18.00-pm.png
53.7 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/softmax-input-output.png
53.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.46.12-pm.png
53.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png
53.2 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/img/input-times-weights.png
53.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png
53.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.48.31-pm.png
52.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/w2-backprop-graph.png
51.3 kB
assets/js/bootstrap.min.js
51.0 kB
Part 02-Module 01-Lesson 07_Keras/img/data.png
50.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-4.12.59-pm.png
50.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.58.26-pm.png
50.0 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png
49.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.07.21-pm.png
49.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.42.29-pm.png
49.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/stop.png
48.7 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/screen-shot-2018-04-14-at-3.13.15-pm.png
48.2 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-terminal.png
48.0 kB
assets/css/fonts/KaTeX_Main-Italic.ttf
48.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-roc-curve.png
47.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/layer-1-grid.png
46.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.31.41-pm.png
46.0 kB
assets/js/jquery.mCustomScrollbar.concat.min.js
45.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.46.12-pm.png
45.0 kB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf
44.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.21.41-pm.png
44.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neuron.png
44.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.38.11-pm.png
43.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/two-layer-graph.png
43.8 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/faces.png
43.8 kB
assets/css/jquery.mCustomScrollbar.min.css
42.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-add-sec-group.png
42.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-3.54.17-pm.png
42.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.26.22-pm.png
42.2 kB
assets/css/fonts/KaTeX_Math-Italic.ttf
41.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html
41.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-environments.png
41.1 kB
assets/css/fonts/KaTeX_AMS-Regular.woff
40.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-6.01.16-pm.png
40.1 kB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf
39.7 kB
assets/css/fonts/KaTeX_Main-Regular.woff
39.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png
39.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/maxpool.jpeg
38.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-3.38.43-pm.png
37.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/07. Quiz Mini-batch.html
37.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/12. Backpropagation.html
37.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff
36.8 kB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf
36.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/grid-layer-1.png
36.1 kB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf
36.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-3.53.12-pm.png
35.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf
34.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-4.47.47-pm.png
34.1 kB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf
34.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.37.22-am.png
34.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.16.55-pm.png
33.3 kB
assets/css/fonts/KaTeX_AMS-Regular.woff2
33.2 kB
assets/css/fonts/KaTeX_Main-Regular.woff2
32.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curve.png
32.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/04. Quiz TensorFlow Linear Function.html
32.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/relu-network.png
31.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/session.png
31.6 kB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf
31.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.10.10-pm.png
31.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-components.png
31.0 kB
assets/css/fonts/KaTeX_Main-Bold.woff2
30.6 kB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf
30.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/pooling-dims.png
29.9 kB
Part 08-Module 01-Lesson 02_Regression/img/lin-reg-no-outliers.png
29.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/conv-dims.png
29.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.27.58-pm.png
28.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-20-at-12.02.06-pm.png
28.3 kB
Part 08-Module 01-Lesson 02_Regression/img/lin-reg-w-outliers.png
28.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.04.21-am.png
27.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-4.34.08-pm.png
27.5 kB
assets/css/fonts/KaTeX_Main-Italic.woff
27.2 kB
Part 04-Module 01-Lesson 04_Hyperparameters/img/f3iwvmld-400x400.jpg
27.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-convergence.gif
27.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.54.48-pm.png
26.8 kB
Part 08-Module 01-Lesson 02_Regression/img/just-a-simple-lin-reg.png
26.6 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff
26.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-divergence.gif
26.2 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-11.35.38-am.png
25.8 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/max-pooling.png
25.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.02.16-pm.png
25.8 kB
Part 03-Module 01-Lesson 05_Autoencoders/img/autoencoder-1.png
25.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/weights-0-1-2.png
25.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/tensorflow-825x510.png
25.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.05.00-pm.png
24.9 kB
assets/css/fonts/KaTeX_Script-Regular.ttf
24.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.02.19-pm.png
24.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/13. Stochastic Gradient Descent.html
24.6 kB
assets/css/plyr.css
24.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html
24.2 kB
Part 08-Module 01-Lesson 02_Regression/img/quadraticlinearregression.png
24.1 kB
assets/css/fonts/KaTeX_Math-Italic.woff
23.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-5.14.13-pm.png
23.8 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff
23.4 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff
23.2 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/launch-instance.png
23.1 kB
assets/css/fonts/KaTeX_Main-Italic.woff2
23.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-11.43.26-am.png
23.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/sequence-to-sequence-unrolled-encoder-decoder.png
23.0 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff
22.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html
22.4 kB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2
22.2 kB
assets/css/katex.min.css
22.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html
21.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html
21.5 kB
Part 02-Module 01-Lesson 07_Keras/img/student-acceptance.png
21.0 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff
20.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/mnist-012.png
20.7 kB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2
20.5 kB
assets/css/fonts/KaTeX_Math-Italic.woff2
20.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.51.54-pm.png
20.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt
20.3 kB
Part 02-Module 01-Lesson 07_Keras/02. Keras.html
20.0 kB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2
20.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/29. Mini Project Dermatologist AI.html
20.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/14. SGD Solution.html
20.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/07. Linear Transform.html
19.9 kB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2
19.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html
19.8 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf
19.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. Backpropagation- Example (part b).html
19.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning.html
19.3 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff
19.2 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf
19.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.en.vtt
18.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/09. Cost.html
18.2 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff
18.1 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt
18.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. Backpropagation Through Time (part b).html
18.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt
18.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/15. Exploration vs. Exploitation.html
17.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/08. Sigmoid Function.html
17.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt
17.6 kB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2
17.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.08-pm.png
17.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.en.vtt
17.3 kB
Part 08-Module 01-Lesson 02_Regression/15. Linear Regression in scikit-learn.html
17.3 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff
16.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html
16.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/14. Quiz Dimensionality.html
16.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt
16.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt
16.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt
16.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/review-and-launch.png
16.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt
16.0 kB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2
16.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/19. MC Control Constant-alpha, Part 2.html
15.8 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/01. Introduction to GPU Workspaces.html
15.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Refresh on Confusion Matrices.html
15.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt
15.5 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/22. Summary.html
15.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/14. Save and Restore TensorFlow Models.html
15.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html
15.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/04. Forward Propagation.html
15.3 kB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2
15.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. The Feedforward Process.html
15.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/16. Quiz One-Step Dynamics, Part 2.html
15.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Backpropagation - Example (part a).html
15.1 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt
15.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html
15.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/14. Quiz Epsilon-Greedy Policies.html
15.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt
14.9 kB
Part 08-Module 01-Lesson 02_Regression/19. (Optional) Closed form Solution Math.html
14.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html
14.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt
14.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt
14.5 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.en.vtt
14.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.42-pm.png
14.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/16. Quiz TensorFlow Dropout.html
14.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. Backpropagation Through Time (part c).html
14.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt
14.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/27. Summary.html
14.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.en.vtt
14.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt
14.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt
14.1 kB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2
14.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt
14.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt
14.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/23. Some more math.html
13.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary.html
13.9 kB
assets/css/fonts/KaTeX_Script-Regular.woff
13.9 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-create-account.png
13.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt
13.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/08. Epochs.html
13.7 kB
Part 08-Module 01-Lesson 02_Regression/17. Multiple Linear Regression.html
13.7 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/03. Data in NumPy.html
13.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/06. An Iterative Method, Part 2.html
13.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/06. Learning and Loss.html
13.6 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Rubric - Dog Breed Classifier.html
13.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/05. Forward Propagation Solution.html
13.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png
13.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html
13.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs.html
13.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/09. Quiz Goals and Rewards.html
13.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt
13.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html
13.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-10-02-at-10.41.44-am.png
13.2 kB
assets/css/fonts/KaTeX_Size1-Regular.ttf
13.2 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Rubric - Generate TV Scripts.html
13.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/04. Program Structure.html
13.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/12. Quiz Optimal Policies.html
13.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/edit-security-group.png
13.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/09. Implementation.html
13.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. Backpropagation Through Time (part a).html
13.1 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/07. CNNs in TensorFlow.html
13.0 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/04. Quiz Test Your Intuition.html
12.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html
12.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/07. Quiz State-Value Functions.html
12.9 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt
12.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. RNN (part b).html
12.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/05. Launch an Instance.html
12.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt
12.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.en.vtt
12.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html
12.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt
12.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/03. Quiz Interpret the Policy.html
12.6 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. What are Jupyter notebooks.html
12.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/22. BPTT Quiz 3.html
12.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt
12.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html
12.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt
12.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/11. Action Values.html
12.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.en.vtt
12.4 kB
assets/css/fonts/KaTeX_Size2-Regular.ttf
12.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/19. Summary.html
12.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt
12.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt
12.4 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt
12.4 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt
12.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/12. Quiz Pole-Balancing.html
12.3 kB
assets/css/fonts/KaTeX_Script-Regular.woff2
12.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/13. Deep Neural Network in TensorFlow.html
12.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/06. Quiz TensorFlow Cross Entropy.html
12.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/13. Convolutional Layers in Keras.html
12.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. Backpropagation- Theory.html
12.1 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff
12.1 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters.html
12.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt
12.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/11. Gradient Descent.html
12.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.en.vtt
12.0 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/02. Style Transfer.html
12.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt
12.0 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff
11.9 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/07. Quiz An Iterative Method.html
11.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/index.jpg
11.8 kB
Part 02-Module 01-Lesson 07_Keras/03. Pre-Lab Student Admissions in Keras.html
11.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neww-nk-fixed.gif
11.8 kB
Part 02-Module 01-Lesson 08_TensorFlow/05. Quiz TensorFlow Softmax.html
11.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/11. Backpropagation Quiz.html
11.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt
11.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt
11.6 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/18. Finite MDPs.html
11.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt
11.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/15. Quiz One-Step Dynamics, Part 1.html
11.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt
11.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Refresh on ROC Curves.html
11.3 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/02. Instructions.html
11.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt
11.3 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/13. Summary.html
11.3 kB
assets/css/fonts/KaTeX_Size4-Regular.ttf
11.3 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/02. Quiz Convolutional Layers.html
11.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. Feedforward Neural Network-Reminder.html
11.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.40.54-pm.png
11.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Camadas convolucionais-RnM1D-XI--8.pt-BR.vtt
11.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.en.vtt
11.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/08. Mini Project Training an MLP on MNIST.html
11.1 kB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.en.vtt
11.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt
11.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt
11.1 kB
Part 08-Module 01-Lesson 02_Regression/14. Absolute Error vs Squared Error.html
11.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html
11.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html
11.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt
11.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt
11.0 kB
Part 01-Module 01-Lesson 02_Anaconda/03. What is Anaconda.html
11.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt
11.0 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/04. Launching the notebook server.html
10.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt
10.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt
10.9 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/save-2.png
10.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html
10.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. RNN History.html
10.9 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/26. Check Your Understanding.html
10.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs for Image Classification.html
10.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/06. Deadline Policy.html
10.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/15. More on Sensitivity and Specificity.html
10.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.55-pm.png
10.8 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/06. DDPG Agent.html
10.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations.html
10.7 kB
Part 02-Module 01-Lesson 08_TensorFlow/15. Finetuning.html
10.7 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/11. NumPy Quiz.html
10.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/02. OpenAI Gym FrozenLakeEnv.html
10.7 kB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.pt-BR.vtt
10.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/07. Feedforward Quiz.html
10.6 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt
10.6 kB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2
10.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. Solution Diagnosing Cancer.html
10.6 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/17. Summary.html
10.6 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt
10.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/03. MiniFlow Architecture.html
10.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html
10.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt
10.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/02. Graphs.html
10.4 kB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2
10.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt
10.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt
10.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html
10.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/24. Implementation.html
10.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt
10.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html
10.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html
10.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Camadas convolucionais-RnM1D-XI--8.en.vtt
10.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt
10.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.en.vtt
10.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt
10.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/03. Your Workspace.html
10.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html
10.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/09. Magic keywords.html
10.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt
10.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/media/nmn.png
10.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/21. Implementation.html
10.1 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Description - Your first neural network.html
10.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. Skin Cancer.html
10.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. From RNN to LSTM.html
10.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/12. Quiz TensorFlow ReLUs.html
10.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/15. Implementation.html
10.0 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/04. DDPG Actor.html
10.0 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/01. Project Intro.html
10.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt
10.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.04.24-pm.png
9.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-11.56.27-am.png
9.9 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.en.vtt
9.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html
9.9 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt
9.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html
9.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html
9.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html
9.8 kB
Part 02-Module 01-Lesson 07_Keras/07. Pre-Lab IMDB Data in Keras.html
9.8 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/11. Quiz Incremental Mean.html
9.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt
9.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/06. Login to the Instance.html
9.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt
9.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.en.vtt
9.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/07. Markdown cells.html
9.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. Quiz Sensitivity and Specificity.html
9.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. RNN (part a).html
9.7 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/01. Convolutional Layers.html
9.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/09. Mini Project 2.html
9.7 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt
9.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt
9.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt
9.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/04. Implementation.html
9.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt
9.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html
9.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras.html
9.6 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/05. Notebook interface.html
9.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html
9.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/02. OpenAI Gym BlackjackEnv.html
9.6 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt
9.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt
9.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt
9.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html
9.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt
9.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt
9.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/03. Materials.html
9.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html
9.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html
9.4 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/05. DDPG Critic.html
9.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt
9.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html
9.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt
9.3 kB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions.html
9.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt
9.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy.html
9.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/12. Implementation.html
9.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt
9.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.en.vtt
9.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/20. BPTT Quiz 1.html
9.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras.html
9.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt
9.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. Quiz Data Challenges.html
9.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/05. Quiz Episodic or Continuing.html
9.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images.html
9.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/x-mn.png
9.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. Quiz ROC Curve.html
9.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt
9.2 kB
Part 08-Module 01-Lesson 02_Regression/20. Linear Regression Warnings.html
9.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/27. Useful Resources.html
9.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt
9.2 kB
Part 02-Module 01-Lesson 08_TensorFlow/03. Hello, Tensor World!.html
9.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. Quiz Random vs Pre-initialized Weights.html
9.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png
9.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt
9.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt
9.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/img/launch.png
9.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. RNN Applications.html
9.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt
9.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt
9.0 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt
9.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html
9.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html
9.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html
9.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. Quiz Diagnosing Cancer.html
9.0 kB
Part 02-Module 01-Lesson 08_TensorFlow/02. Installing TensorFlow.html
9.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.en.vtt
9.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/15. Unfolded Model Quiz.html
9.0 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt
9.0 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/08. Troubleshooting.html
9.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt
9.0 kB
Part 01-Module 01-Lesson 02_Anaconda/06. Managing environments.html
9.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html
9.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/07. Implementation.html
9.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/21. BPTT Quiz 2.html
8.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt
8.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Camadas convolucionais-RnM1D-XI--8.zh-CN.vtt
8.9 kB
Part 08-Module 01-Lesson 02_Regression/13. Mini-batch Gradient Descent.html
8.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html
8.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt
8.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.en.vtt
8.9 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.en.vtt
8.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.en.vtt
8.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/09. Pre-Lab NotMNIST in TensorFlow.html
8.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/03. Learning Plan.html
8.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html
8.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/08. Implementation.html
8.8 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt
8.8 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Rubric - Your first neural network.html
8.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/20. Mini Project 6.html
8.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/04. Get Access to GPU Instances.html
8.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.45.22-pm.png
8.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/16. Analyzing Performance.html
8.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html
8.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/12. Mini Project 3.html
8.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.en.vtt
8.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt
8.7 kB
Part 01-Module 01-Lesson 02_Anaconda/05. Managing packages.html
8.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt
8.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/21. Mini Project Image Augmentation in Keras.html
8.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html
8.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/07. Udacity Support.html
8.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt
8.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/17. Mini Project 5.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html
8.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html
8.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/19. Mini Project CNNs in Keras.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html
8.6 kB
Part 08-Module 01-Lesson 02_Regression/02. Quiz Housing Prices.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html
8.6 kB
Part 08-Module 01-Lesson 02_Regression/12. Mean vs Total Error.html
8.6 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html
8.6 kB
Part 02-Module 01-Lesson 08_TensorFlow/01. Intro.html
8.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt
8.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. Image Challenges.html
8.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt
8.5 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.en.vtt
8.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt
8.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras.html
8.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs for Image Classification.html
8.5 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number of Training Iterations Epochs.html
8.5 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/02. OpenAI Gym CliffWalkingEnv.html
8.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt
8.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/18. Implementation.html
8.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt
8.4 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Description - Dog Breed Classifier.html
8.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt
8.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/02. Resources.html
8.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt
8.4 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix.html
8.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt
8.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt
8.4 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt
8.4 kB
assets/css/fonts/KaTeX_Size3-Regular.ttf
8.4 kB
Part 05-Module 01-Lesson 03_Generate Faces/Project Rubric - Generate Faces.html
8.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt
8.3 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Rubric - Teach a Quadcopter How to Fly.html
8.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt
8.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt
8.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt
8.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/11. Two-layer Neural Network.html
8.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt
8.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt
8.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.en.vtt
8.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/17. Doing More With Your GAN.html
8.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/04. Implementation.html
8.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt
8.3 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/01. Introduction.html
8.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. RNN Introduction.html
8.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt
8.2 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt
8.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random vs Pre-initialized Weight.html
8.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction.html
8.2 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt
8.2 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.pt-BR.vtt
8.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif
8.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/08. Community Guidelines.html
8.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt
8.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivity and Specificity.html
8.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What is the network looking at.html
8.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well .html
8.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt
8.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example.html
8.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1.html
8.1 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/20. Implementation.html
8.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training the Neural Network.html
8.1 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt
8.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/11. Creating a slideshow.html
8.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction.html
8.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges.html
8.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating the Training.html
8.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers.html
8.0 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. False Negatives and Positives.html
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification.html
8.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt
8.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Probability of Skin Cancer.html
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve.html
8.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.en.vtt
8.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. Comparing our Results with Doctors.html
8.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix.html
8.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/10. Mini Project DP (Parts 0 and 1).html
8.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/16. Implementation.html
8.0 kB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/01. Enroll in your next ND program.html
8.0 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/04. Max Pooling Layers.html
8.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2-grad-fixed.gif
8.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/13. Mini Project DP (Part 2).html
8.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/16. Mini Project DP (Part 3).html
8.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/19. Mini Project DP (Part 4).html
8.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/22. Mini Project DP (Part 5).html
8.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/25. Mini Project DP (Part 6).html
8.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis.html
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization.html
8.0 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt
8.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. RNN- Example.html
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Intro.html
8.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion.html
8.0 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt
7.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The data.html
7.9 kB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent.html
7.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/14. Implementation.html
7.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt
7.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.pt-BR.vtt
7.9 kB
Part 08-Module 01-Lesson 02_Regression/24. Neural Networks Playground.html
7.9 kB
Part 01-Module 01-Lesson 02_Anaconda/04. Installing Anaconda.html
7.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt
7.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/15. Mini Project 4.html
7.8 kB
Part 04-Module 01-Lesson 04_Hyperparameters/04. Learning Rate.html
7.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html
7.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt
7.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt
7.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity.html
7.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding.html
7.8 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt
7.8 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt
7.8 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt
7.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/06. Mini Project 1.html
7.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt
7.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt
7.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.en.vtt
7.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.en.vtt
7.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/26. Wrap Up.html
7.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. RNN- Unfolded Model.html
7.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt
7.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/10. Quiz.html
7.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt
7.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/05. Mini Project MC (Parts 0 and 1).html
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration.html
7.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/08. Mini Project MC (Part 2).html
7.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/17. Mini Project MC (Part 3).html
7.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/21. Mini Project MC (Part 4).html
7.6 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/05. Quiz Max Pooling Layers.html
7.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt
7.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution.html
7.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights.html
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method, Part 1.html
7.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/04. The Notebooks.html
7.6 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt
7.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. Introducing Ortal .html
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement.html
7.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration.html
7.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration.html
7.5 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt
7.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return.html
7.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt
7.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation.html
7.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt
7.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt
7.5 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.en.vtt
7.5 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt
7.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.pt-BR.vtt
7.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Meet Andrew.html
7.5 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/07. Ornstein–Uhlenbeck Noise.html
7.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt
7.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt
7.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution.html
7.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution.html
7.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution.html
7.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution.html
7.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/04. Quiz Space Representations.html
7.5 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. Recall.html
7.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt
7.4 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt
7.4 kB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution.html
7.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.05.19-pm.png
7.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt
7.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction.html
7.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html
7.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt
7.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.en.vtt
7.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/06. Build a GAN.html
7.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/10. Cost Solution.html
7.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt
7.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2.html
7.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions.html
7.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt
7.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt
7.3 kB
Part 03-Module 01-Lesson 01_Cloud Computing/01. Overview.html
7.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network.html
7.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.en.vtt
7.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications.html
7.3 kB
Part 01-Module 01-Lesson 02_Anaconda/07. More environment actions.html
7.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. Precision.html
7.3 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/01. Transfer Learning Intro.html
7.3 kB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices.html
7.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt
7.3 kB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression.html
7.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/11. Implementation.html
7.3 kB
Part 08-Module 01-Lesson 02_Regression/01. Intro.html
7.3 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/01. CNN Project.html
7.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement.html
7.3 kB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error.html
7.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/04. Fitting a Line Through Data.html
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error.html
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration.html
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha, Part 1.html
7.2 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/04. Flappy Bird.html
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values.html
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions.html
7.2 kB
Part 01-Module 01-Lesson 02_Anaconda/08. Best practices.html
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values.html
7.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.en.vtt
7.2 kB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/22. Regularization.html
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise.html
7.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/05. Moving a Line.html
7.2 kB
Part 01-Module 01-Lesson 02_Anaconda/09. On Python versions at Udacity.html
7.2 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick.html
7.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.en.vtt
7.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask.html
7.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/10. Converting notebooks.html
7.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction.html
7.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt
7.2 kB
Part 08-Module 01-Lesson 02_Regression/25. Outro.html
7.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem.html
7.2 kB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression.html
7.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Conclusion.html
7.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt
7.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym.html
7.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt
7.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt
7.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/01. Semi-supervised Learning.html
7.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/11. Implementing Deep Q-Learning.html
7.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.en.vtt
7.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/01. Embeddings Intro.html
7.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt
7.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/10. Quiz Action-Value Functions.html
7.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt
7.1 kB
Part 03-Module 01-Lesson 01_Cloud Computing/07. More Resources.html
7.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt
7.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt
7.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt
7.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements.html
7.0 kB
assets/css/fonts/KaTeX_Size1-Regular.woff
7.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. How GANs work.html
7.0 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.en.vtt
7.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/09. RNN Hyperparameters.html
7.0 kB
Part 02-Module 01-Lesson 08_TensorFlow/10. Lab NotMNIST in TensorFlow.html
7.0 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt
7.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.en.vtt
6.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/05. Mini Project TD (Parts 0 and 1).html
6.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt
6.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction.html
6.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/09. Mini Project TD (Part 2).html
6.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/12. Mini Project TD (Part 3).html
6.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/15. Mini Project TD (Part 4).html
6.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt
6.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.pt-BR.vtt
6.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.en.vtt
6.9 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/03. Solution Convolutional Layers.html
6.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt
6.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions.html
6.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt
6.9 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/01. Deep Convolutional GANs.html
6.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy.html
6.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt
6.8 kB
Part 03-Module 01-Lesson 01_Cloud Computing/03. Apply Credits.html
6.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt
6.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks.html
6.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-2.png
6.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solution.html
6.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values.html
6.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1.html
6.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions.html
6.7 kB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt
6.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited.html
6.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis.html
6.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games and Equilibria.html
6.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/10. Sources References.html
6.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/03. Batch Normalization.html
6.7 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax.html
6.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. Introducing Ian Goodfellow.html
6.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward.html
6.7 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa.html
6.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt
6.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt
6.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution.html
6.7 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/03. Replay Buffer.html
6.7 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Description - Generate TV Scripts.html
6.7 kB
assets/css/fonts/KaTeX_Size2-Regular.woff
6.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html
6.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. What can you do with GANs.html
6.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2.html
6.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3.html
6.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. Practical tips and tricks for training GANs.html
6.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt
6.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Get started with a GAN.html
6.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning.html
6.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt
6.7 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm.html
6.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number of Hidden Units Layers.html
6.6 kB
Part 03-Module 01-Lesson 05_Autoencoders/01. Autoencoder Lesson Intro.html
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network.html
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network.html
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers.html
6.6 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network.html
6.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt
6.6 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction.html
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses.html
6.6 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/01. Intro to LSTM.html
6.6 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN.html
6.6 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt
6.6 kB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt
6.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt
6.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt
6.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.en.vtt
6.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/01. Intro.html
6.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/12. TensorFlow Implementation.html
6.5 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt
6.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt
6.5 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/03. DeepTraffic.html
6.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/index.html
6.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/06. Exercise Discretization.html
6.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt
6.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/08. Exercise Tile Coding.html
6.5 kB
Part 02-Module 01-Lesson 08_TensorFlow/17. Outro.html
6.5 kB
assets/css/fonts/KaTeX_Size4-Regular.woff
6.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. The Use Gate.html
6.5 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/06. Solution Max Pooling Layers.html
6.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html
6.4 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt
6.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt
6.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html
6.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt
6.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. The Learn Gate.html
6.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.zh-CN.vtt
6.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.pt-BR.vtt
6.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay.html
6.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html
6.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0).html
6.4 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0).html
6.4 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Description - Teach a Quadcopter How to Fly.html
6.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt
6.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network.html
6.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/04. Character-wise RNN Notebook.html
6.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning.html
6.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/15. Outro.html
6.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/04. DCGAN Implementation.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html
6.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html
6.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. The Forget Gate.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html
6.3 kB
Part 02-Module 01-Lesson 07_Keras/05. Optimizers in Keras.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html
6.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt
6.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt
6.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning.html
6.3 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html
6.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html
6.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation.html
6.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.en.vtt
6.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html
6.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces.html
6.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt
6.3 kB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate.html
6.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation.html
6.3 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Introduction.html
6.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt
6.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator.html
6.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/09. Prerequisites.html
6.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt
6.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing.html
6.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html
6.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.zh-CN.vtt
6.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. The Remember Gate.html
6.2 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html
6.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/06. Code cells.html
6.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt
6.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt
6.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.en.vtt
6.2 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html
6.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.en.vtt
6.2 kB
Part 02-Module 01-Lesson 07_Keras/01. Intro.html
6.2 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/02. Quadcopter workspace.html
6.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.zh-CN.vtt
6.2 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You Will Build.html
6.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Classification with GANs.html
6.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-grad-fixed.gif
6.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions.html
6.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise.html
6.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN.html
6.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Welcome to MiniFlow.html
6.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other architectures.html
6.2 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/01. Instructor.html
6.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt
6.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization.html
6.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.pt-BR.vtt
6.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding.html
6.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions.html
6.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN.html
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution.html
6.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt
6.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt
6.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/01. Intro.html
6.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding.html
6.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning.html
6.1 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting Set Up.html
6.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.en.vtt
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution.html
6.1 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.en.vtt
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network.html
6.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/index.html
6.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.zh-CN.vtt
6.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build the Network Solution.html
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise.html
6.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution.html
6.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary.html
6.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning.html
6.1 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/08. CNNs - Additional Resources.html
6.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/Project Description - Generate Faces.html
6.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output and Loss Solutions.html
6.1 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt
6.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.en.vtt
6.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Precision and Recall.html
6.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt
6.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution.html
6.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt
6.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/01. Introduction.html
6.1 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html
6.1 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/08. Keyboard shortcuts.html
6.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-wise RNNs.html
6.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution.html
6.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep.html
6.0 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/05. Books to Read.html
6.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence Batching.html
6.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build the Network.html
6.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt
6.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/02. Create an AWS Account.html
6.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example.html
6.0 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt
6.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies.html
6.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss.html
6.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.en.vtt
6.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up.html
6.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output.html
6.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt
6.0 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html
6.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell.html
6.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size.html
6.0 kB
Part 02-Module 01-Lesson 07_Keras/04. Lab Student Admissions in Keras.html
6.0 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.en.vtt
6.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality.html
6.0 kB
Part 02-Module 01-Lesson 07_Keras/08. Lab IMDB Data in Keras.html
6.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/01. Introducing Jay.html
6.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies.html
6.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt
6.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt
5.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt
5.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/03. Installing Jupyter Notebook.html
5.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt
5.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction.html
5.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/index.html
5.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/01. Intro.html
5.9 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/jupyter-logo.png
5.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt
5.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.zh-CN.vtt
5.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt
5.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2.html
5.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion Matrix 2.html
5.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-1.png
5.9 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/12. Finishing up.html
5.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html
5.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes.html
5.9 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Dimensions.html
5.9 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building and Training the Network.html
5.9 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting it All Together.html
5.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.en.vtt
5.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt
5.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt
5.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt
5.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt
5.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. Architecture of LSTM.html
5.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt
5.8 kB
Part 01-Module 01-Lesson 02_Anaconda/01. Instructor.html
5.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt
5.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt
5.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt
5.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameter Solutions.html
5.8 kB
assets/css/fonts/KaTeX_Size1-Regular.woff2
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN and the Generator.html
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution.html
5.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt
5.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt
5.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. Basics of LSTM.html
5.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Aplicações de CNNs-HrYNL_1SV2Y.pt-BR.vtt
5.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN vs LSTM.html
5.8 kB
Part 03-Module 01-Lesson 04_Weight Initialization/01. Weight Initialization Intro.html
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution.html
5.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.pt-BR.vtt
5.8 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors.html
5.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt
5.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/12. Outro LSTM.html
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. DCGAN Architecture.html
5.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt
5.8 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt
5.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator.html
5.7 kB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.en.vtt
5.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png
5.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.en.vtt
5.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt
5.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Classifier Solution.html
5.7 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning with VGGNet.html
5.7 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Classifier.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training solution.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training.html
5.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building the Network Solution.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation Solution.html
5.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. VGGNet Solution.html
5.7 kB
Part 05-Module 01-Lesson 03_Generate Faces/03. Face Generation Workspace.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation.html
5.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/index.html
5.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve.html
5.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. VGGNet.html
5.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt
5.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt
5.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec.html
5.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt
5.6 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When accuracy won't work.html
5.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution.html
5.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building the Network.html
5.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt
5.6 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/02. Project Workspace.html
5.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. Actor-Critic with Advantage.html
5.6 kB
Part 06-Module 01-Lesson 01_Introduction to RL/06. Reference Guide.html
5.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling.html
5.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution.html
5.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results.html
5.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches.html
5.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/index.html
5.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt
5.6 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/02. Dog Breed Workspace.html
5.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. Actor-Critic Methods.html
5.6 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/02. TV Script Workspace.html
5.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. Two Function Approximators.html
5.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.pt-BR.vtt
5.6 kB
Part 03-Module 01-Lesson 04_Weight Initialization/06. Additional Material.html
5.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. Advantage Function.html
5.6 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction.html
5.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt
5.6 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building the RNN.html
5.6 kB
assets/css/fonts/KaTeX_Size2-Regular.woff2
5.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. The Actor and The Critic.html
5.6 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt
5.6 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt
5.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.en.vtt
5.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. A Better Score Function.html
5.6 kB
Part 08-Module 01-Lesson 02_Regression/index.html
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt
5.5 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/03. Mini Project.html
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt
5.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Aplicações de CNNs-HrYNL_1SV2Y.en.vtt
5.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt
5.5 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. Welcome to the Deep Learning Nanodegree Program.html
5.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.en.vtt
5.5 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/01. Introduction.html
5.5 kB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoders Solution.html
5.5 kB
Part 02-Module 01-Lesson 07_Keras/06. Mini Project Intro.html
5.5 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt
5.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt
5.5 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.en.vtt
5.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.en.vtt
5.5 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/03. GPU Workspace Playground.html
5.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dsdl1.png
5.5 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.en.vtt
5.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt
5.5 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt
5.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt
5.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. Policy Function Approximation.html
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. Monte Carlo Policy Gradients.html
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. Constrained Policy Gradients.html
5.4 kB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution.html
5.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt
5.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. Why Policy-Based Methods.html
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. Stochastic Policy Search.html
5.4 kB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders.html
5.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/index.html
5.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt
5.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. Policy-Based Methods.html
5.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. Policy Gradients.html
5.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt
5.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.en.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. Recap.html
5.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/index.html
5.4 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt
5.4 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training the Network.html
5.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.pt-BR.vtt
5.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt
5.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary.html
5.4 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment RNN.html
5.4 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing.html
5.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt
5.4 kB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt
5.4 kB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Uniform Distribution.html
5.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.en.vtt
5.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Normal Distribution.html
5.3 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Solutions.html
5.3 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders.html
5.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Ones and Zeros.html
5.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt
5.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Too Small.html
5.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt
5.3 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project.html
5.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt
5.3 kB
Part 05-Module 01-Lesson 03_Generate Faces/01. One Project Away!.html
5.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.en.vtt
5.3 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.zh-CN.vtt
5.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.pt-BR.vtt
5.3 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Introduction.html
5.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt
5.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt
5.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt
5.2 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. Project Introduction.html
5.2 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.en.vtt
5.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt
5.2 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/02. Workspace Playground.html
5.2 kB
assets/css/fonts/KaTeX_Size4-Regular.woff2
5.2 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.pt-BR.vtt
5.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt
5.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt
5.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt
5.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting.html
5.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt
5.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt
5.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt
5.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt
5.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt
5.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/03. A Simple Autoencoder.html
5.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt
5.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt
5.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt
5.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt
5.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt
5.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt
5.1 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.ar.vtt
5.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt
5.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/index.html
5.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt
5.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt
5.0 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt
5.0 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.pt-BR.vtt
5.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/index.html
5.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt
5.0 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt
5.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt
4.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt
4.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt
4.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.en.vtt
4.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt
4.9 kB
Part 02-Module 01-Lesson 08_TensorFlow/index.html
4.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt
4.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt
4.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt
4.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/index.html
4.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt
4.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt
4.9 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.zh-CN.vtt
4.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt
4.9 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt
4.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt
4.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt
4.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt
4.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Aplicações de CNNs-HrYNL_1SV2Y.zh-CN.vtt
4.8 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.en.vtt
4.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.en.vtt
4.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt
4.8 kB
assets/css/fonts/KaTeX_Size3-Regular.woff
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt
4.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt
4.8 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.en.vtt
4.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt
4.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt
4.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt
4.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt
4.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt
4.7 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt
4.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt
4.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/index.html
4.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt
4.7 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.en.vtt
4.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt
4.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt
4.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt
4.7 kB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt
4.7 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt
4.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.en.vtt
4.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.pt-BR.vtt
4.7 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt
4.7 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt
4.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt
4.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt
4.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt
4.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/index.html
4.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt
4.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt
4.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.pt-BR.vtt
4.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.en.vtt
4.6 kB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt
4.6 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/index.html
4.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt
4.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt
4.6 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.pt-BR.vtt
4.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt
4.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt
4.6 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt
4.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/index.html
4.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/index.html
4.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/index.html
4.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt
4.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt
4.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt
4.5 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/index.html
4.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt
4.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.pt-BR.vtt
4.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt
4.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.en.vtt
4.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt
4.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt
4.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt
4.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt
4.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/index.html
4.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt
4.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt
4.4 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/index.html
4.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.en.vtt
4.4 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt
4.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt
4.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt
4.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/index.html
4.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt
4.4 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt
4.3 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.en.vtt
4.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt
4.3 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt
4.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt
4.3 kB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/index.html
4.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/index.html
4.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt
4.3 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt
4.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/index.html
4.3 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.pt-BR.vtt
4.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/maze.png
4.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt
4.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/index.html
4.3 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.en.vtt
4.3 kB
Part 04-Module 01-Lesson 04_Hyperparameters/index.html
4.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt
4.3 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/index.html
4.3 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/index.html
4.3 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.zh-CN.vtt
4.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.zh-CN.vtt
4.2 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt
4.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt
4.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.en.vtt
4.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/index.html
4.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt
4.2 kB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/index.html
4.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.en.vtt
4.2 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/index.html
4.2 kB
Part 01-Module 01-Lesson 02_Anaconda/index.html
4.2 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt
4.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt
4.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt
4.2 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt
4.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt
4.2 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt
4.1 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt
4.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt
4.1 kB
Part 02-Module 01-Lesson 07_Keras/index.html
4.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt
4.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.pt-BR.vtt
4.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.en.vtt
4.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.en.vtt
4.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt
4.1 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/index.html
4.1 kB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt
4.1 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt
4.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt
4.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt
4.0 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt
4.0 kB
Part 03-Module 01-Lesson 01_Cloud Computing/index.html
4.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-chain.png
4.0 kB
Part 03-Module 01-Lesson 05_Autoencoders/index.html
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.en.vtt
4.0 kB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.en.vtt
4.0 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-grad-fixed.gif
4.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt
4.0 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/index.html
4.0 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt
4.0 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizando CNNs-mnqS_EhEZVg.en.vtt
4.0 kB
Part 03-Module 01-Lesson 04_Weight Initialization/index.html
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.zh-CN.vtt
4.0 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt
4.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt
3.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt
3.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.zh-CN.vtt
3.9 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/index.html
3.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt
3.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt
3.9 kB
Part 05-Module 01-Lesson 03_Generate Faces/index.html
3.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt
3.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizando CNNs-mnqS_EhEZVg.pt-BR.vtt
3.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.en.vtt
3.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.44.44-pm.png
3.9 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.zh-CN.vtt
3.9 kB
Part 08-Module 01-Lesson 02_Regression/img/m.gif
3.9 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt
3.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt
3.9 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.en.vtt
3.9 kB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/index.html
3.9 kB
Part 06-Module 01-Lesson 01_Introduction to RL/index.html
3.9 kB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt
3.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.en.vtt
3.9 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.zh-CN.vtt
3.9 kB
assets/css/fonts/KaTeX_Size3-Regular.woff2
3.9 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.en.vtt
3.9 kB
Part 04-Module 01-Lesson 07_Generate TV Scripts/index.html
3.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.en.vtt
3.9 kB
assets/css/styles.css
3.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt
3.8 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt
3.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt
3.8 kB
Part 01-Module 01-Lesson 03_Applying Deep Learning/index.html
3.8 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt
3.8 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl2dw2-grad.png
3.8 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt
3.8 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt
3.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt
3.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt
3.8 kB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/index.html
3.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt
3.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt
3.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt
3.7 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt
3.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt
3.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.en.vtt
3.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt
3.7 kB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/index.html
3.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt
3.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt
3.7 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt
3.7 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt
3.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.en.vtt
3.7 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt
3.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt
3.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.pt-BR.vtt
3.7 kB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt
3.7 kB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt
3.6 kB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/index.html
3.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl1dw1-grad.png
3.6 kB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.en.vtt
3.6 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt
3.6 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt
3.6 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.en.vtt
3.6 kB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.en.vtt
3.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt
3.6 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt
3.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt
3.6 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt
3.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.zh-CN.vtt
3.5 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.zh-CN.vtt
3.5 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.en.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.en.vtt
3.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.zh-CN.vtt
3.5 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt
3.5 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt
3.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt
3.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt
3.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/cost.png
3.5 kB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt
3.5 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt
3.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt
3.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt
3.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt
3.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt
3.4 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt
3.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt
3.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.en.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizando CNNs-mnqS_EhEZVg.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.zh-CN.vtt
3.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.en.vtt
3.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/19.png
3.4 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.zh-CN.vtt
3.4 kB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt
3.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt
3.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt
3.4 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt
3.4 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.en.vtt
3.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt
3.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt
3.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.pt-BR.vtt
3.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt
3.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.zh-CN.vtt
3.3 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt
3.3 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt
3.3 kB
Part 01-Module 01-Lesson 02_Anaconda/02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt
3.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt
3.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.en.vtt
3.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt
3.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl2ds-grad.png
3.3 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt
3.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png
3.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt
3.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.pt-BR.vtt
3.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt
3.2 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt
3.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt
3.2 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt
3.2 kB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt
3.2 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt
3.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt
3.2 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt
3.2 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.en.vtt
3.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.en.vtt
3.1 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.en.vtt
3.1 kB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt
3.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.en.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt
3.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt
3.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.en.vtt
3.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt
3.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.en.vtt
3.1 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt
3.1 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt
3.1 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt
3.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt
3.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt
3.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt
3.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt
3.1 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt
3.1 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.en.vtt
3.0 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt
3.0 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.en.vtt
3.0 kB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.en.vtt
3.0 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif
3.0 kB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.zh-CN.vtt
3.0 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.en.vtt
3.0 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt
3.0 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt
3.0 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt
3.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt
3.0 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt
2.9 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.en.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt
2.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt
2.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt
2.9 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt
2.9 kB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt
2.9 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt
2.9 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt
2.9 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt
2.9 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt
2.9 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt
2.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt
2.9 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt
2.9 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.pt-BR.vtt
2.9 kB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt
2.8 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt
2.8 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt
2.8 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt
2.8 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.zh-CN.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt
2.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.en.vtt
2.8 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt
2.8 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt
2.8 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt
2.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt
2.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.en.vtt
2.8 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.en.vtt
2.7 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt
2.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-chain.png
2.7 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt
2.7 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.zh-CN.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt
2.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.en.vtt
2.7 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.en.vtt
2.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt
2.7 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt
2.7 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt
2.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt
2.7 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.en.vtt
2.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt
2.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt
2.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt
2.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt
2.6 kB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.pt-BR.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt
2.6 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neww.png
2.6 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.en.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt
2.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.en.vtt
2.6 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt
2.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt
2.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt
2.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.pt-BR.vtt
2.6 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt
2.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt
2.6 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt
2.6 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt
2.6 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt
2.6 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt
2.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt
2.6 kB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.zh-CN.vtt
2.5 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt
2.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt
2.5 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.pt-BR.vtt
2.5 kB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt
2.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt
2.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.en.vtt
2.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt
2.5 kB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt
2.5 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.en.vtt
2.5 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt
2.5 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.en.vtt
2.5 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt
2.5 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt
2.5 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt
2.4 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Exemplo de classificação-Dh625piH7Z0.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt
2.4 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt
2.4 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.en.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt
2.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt
2.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.en.vtt
2.4 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt
2.4 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt
2.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.en.vtt
2.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt
2.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt
2.4 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt
2.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt
2.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/newx-1n.png
2.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png
2.3 kB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt
2.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt
2.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt
2.3 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.en.vtt
2.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt
2.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt
2.3 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt
2.3 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif
2.3 kB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt
2.2 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt
2.2 kB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt
2.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/21.png
2.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt
2.2 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt
2.2 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt
2.2 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt
2.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt
2.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt
2.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/neuron-output.png
2.2 kB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.zh-CN.vtt
2.2 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.en.vtt
2.1 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif
2.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en-US.vtt
2.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.en.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt
2.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.en.vtt
2.1 kB
Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-61.gif
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt
2.1 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt
2.1 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt
2.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.en.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt
2.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.en.vtt
2.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/b-1byk.png
2.1 kB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt
2.1 kB
Part 08-Module 01-Lesson 02_Regression/img/f1.gif
2.1 kB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt
2.1 kB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt
2.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt
2.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.en.vtt
2.0 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt
2.0 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt
2.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt
2.0 kB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt
2.0 kB
Part 08-Module 01-Lesson 02_Regression/img/f2.gif
1.9 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt
1.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.pt-BR.vtt
1.9 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.pt-BR.vtt
1.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt
1.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt
1.9 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.en.vtt
1.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.zh-CN.vtt
1.9 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt
1.9 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt
1.9 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt
1.8 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.en.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.pt-BR.vtt
1.8 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.en.vtt
1.8 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif
1.8 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt
1.8 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt
1.8 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en.vtt
1.8 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt
1.8 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.pt-BR.vtt
1.8 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt
1.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt
1.7 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt
1.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif
1.7 kB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt
1.7 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt
1.7 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/12.png
1.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.en.vtt
1.7 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.en.vtt
1.7 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.zh-CN.vtt
1.7 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt
1.7 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt
1.7 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt
1.7 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.zh-CN.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt
1.7 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt
1.7 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.en.vtt
1.7 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt
1.7 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.en.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. 分类问题 2 -46PywnGa_cQ.pt-BR.vtt
1.6 kB
Part 08-Module 01-Lesson 02_Regression/img/f6.gif
1.6 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en-US.vtt
1.6 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt
1.6 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt
1.6 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt
1.6 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt
1.6 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt
1.6 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt
1.6 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt
1.6 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt
1.6 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt
1.5 kB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt
1.5 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/z.png
1.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.en.vtt
1.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.pt-BR.vtt
1.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.zh-CN.vtt
1.5 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt
1.5 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt
1.5 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt
1.5 kB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt
1.5 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt
1.5 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt
1.5 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt
1.5 kB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt
1.5 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt
1.5 kB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt
1.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 02_Regression/img/y.gif
1.4 kB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.en.vtt
1.4 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.zh-CN.vtt
1.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.en.vtt
1.4 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/l2.png
1.4 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt
1.4 kB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt
1.4 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.en.vtt
1.4 kB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt
1.4 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.en.vtt
1.4 kB
[FTU Forum].url
1.4 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt
1.4 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt
1.4 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt
1.4 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-62.gif
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt
1.3 kB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt
1.3 kB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt
1.3 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.en.vtt
1.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2.png
1.3 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.pt-BR.vtt
1.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt
1.3 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.en.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt
1.3 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt
1.3 kB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt
1.3 kB
Part 02-Module 01-Lesson 08_TensorFlow/img/linear-equation.gif
1.3 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt
1.3 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt
1.3 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.en.vtt
1.3 kB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.en.vtt
1.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt
1.2 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/img/e.gif
1.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/newx.png
1.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. 为何是神经网络-zAkzOZntK6Y.zh-CN.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.pt-BR.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.zh-CN.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.en.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt
1.2 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt
1.2 kB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2.png
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt
1.2 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt
1.2 kB
Part 08-Module 01-Lesson 02_Regression/img/f4.gif
1.2 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt
1.2 kB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt
1.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.en.vtt
1.1 kB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt
1.1 kB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.zh-CN.vtt
1.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt
1.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. 项目简介-jvJtHYBX7sM.pt-BR.vtt
1.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt
1.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. 项目简介-jvJtHYBX7sM.zh-CN.vtt
1.1 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt
1.1 kB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt
1.1 kB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt
1.1 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt
1.1 kB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt
1.1 kB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.en.vtt
1.1 kB
Part 05-Module 01-Lesson 03_Generate Faces/02. 项目简介-jvJtHYBX7sM.en.vtt
1.1 kB
Part 08-Module 01-Lesson 02_Regression/img/gif-1.gif
1.1 kB
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.pt-BR.vtt
1.0 kB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt
1.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt
1.0 kB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.pt-BR.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt
1.0 kB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt
1.0 kB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt
1.0 kB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt
1.0 kB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt
1.0 kB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt
996 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt
995 Bytes
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt
983 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt
977 Bytes
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt
970 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt
965 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt
956 Bytes
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt
956 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt
947 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.en.vtt
943 Bytes
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt
939 Bytes
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt
939 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt
937 Bytes
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.en.vtt
937 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt
920 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif
919 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt
918 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.en.vtt
910 Bytes
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt
891 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt
889 Bytes
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.zh-CN.vtt
883 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt
874 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.en.vtt
874 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.en.vtt
867 Bytes
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.pt-BR.vtt
866 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.pt-BR.vtt
857 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.en.vtt
856 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt
853 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt
850 Bytes
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt
850 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt
840 Bytes
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt
831 Bytes
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.en.vtt
830 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt
829 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt
824 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.zh-CN.vtt
822 Bytes
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.zh-CN.vtt
822 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt
813 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt
810 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt
804 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt
804 Bytes
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt
793 Bytes
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt
792 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt
791 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt
790 Bytes
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt
787 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt
772 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt
766 Bytes
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt
764 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt
754 Bytes
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt
746 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt
739 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt
734 Bytes
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.en.vtt
734 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt
730 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt
729 Bytes
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.en.vtt
725 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt
720 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en-US.vtt
720 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt
719 Bytes
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.zh-CN.vtt
718 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt
701 Bytes
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt
700 Bytes
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Apresentando Alexis-38ExGpdyvJI.en.vtt
694 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en.vtt
688 Bytes
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt
685 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt
678 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en.vtt
667 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt.vtt
656 Bytes
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.zh-CN.vtt
655 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt
643 Bytes
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt
640 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt
633 Bytes
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt
632 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt
624 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt
618 Bytes
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Apresentando Alexis-38ExGpdyvJI.zh-CN.vtt
615 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt
607 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt
600 Bytes
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Apresentando Alexis-38ExGpdyvJI.pt-BR.vtt
599 Bytes
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.pt-BR.vtt
590 Bytes
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.en.vtt
586 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt
584 Bytes
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt
574 Bytes
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.en.vtt
558 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt
551 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt
548 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt
545 Bytes
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt
540 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt
538 Bytes
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt
528 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt
526 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt
510 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt
508 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt
505 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt
501 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt
495 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt
487 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt
482 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt
481 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt
478 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt
475 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt
472 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt
468 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt
466 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt
456 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt
420 Bytes
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt
420 Bytes
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt
419 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt
390 Bytes
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt
364 Bytes
How you can help Team-FTU.txt
241 Bytes
[FreeCoursesOnline.Me].url
133 Bytes
[FreeTutorials.Eu].url
129 Bytes
FTUApps.com website coming soon.txt
94 Bytes
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt
91 Bytes
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt
72 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>