搜索
GetFreeCourses.Co-Udemy-Machine Learning & Data Science A-Z Hands-on Python 2021
磁力链接/BT种子名称
GetFreeCourses.Co-Udemy-Machine Learning & Data Science A-Z Hands-on Python 2021
磁力链接/BT种子简介
种子哈希:
010a2d06b48e96164b9085997f682f486bf13ab1
文件大小:
6.74G
已经下载:
102
次
下载速度:
极快
收录时间:
2022-04-20
最近下载:
2025-02-15
移花宫入口
移花宫.com
邀月.com
怜星.com
花无缺.com
yhgbt.icu
yhgbt.top
磁力链接下载
magnet:?xt=urn:btih:010A2D06B48E96164B9085997F682F486BF13AB1
推荐使用
PIKPAK网盘
下载资源,10TB超大空间,不限制资源,无限次数离线下载,视频在线观看
下载BT种子文件
磁力链接
迅雷下载
PIKPAK在线播放
世界之窗
91视频
含羞草
欲漫涩
逼哩逼哩
成人快手
51品茶
抖阴破解版
极乐禁地
91短视频
TikTok成人版
PornHub
草榴社区
91未成年
乱伦巴士
呦乐园
萝莉岛
最近搜索
片桐
稀缺房
小许
杨ai换脸
+秦先生
微博
留学生 李真
rusatmos
青海
真实性交
会所撩
指挥
模特揩油
中文丝袜
相机
第1弹
舌精
会飞的象
弄脏
幻梦
巨乳丝袜
coreldraw graphics suite x7
百万网红
百练
偷拍 商场
母狗群交
内射 无码
大神翻车
芭比娃娃
の交尾
文件列表
6. Supervised Learning - Regression/8. Random Forest Model Development.mp4
258.2 MB
5. Supervised Learning - Classification/1. Supervised Learning Models - Introduction and Understanding the Data.mp4
245.1 MB
5. Supervised Learning - Classification/4. k-NN Training-Set and Test-Set Creation.mp4
239.5 MB
3. Data Preprocessing/6. Missing Values2.mp4
230.0 MB
6. Supervised Learning - Regression/1. Simple and Multiple Linear Regression Concepts.mp4
222.5 MB
3. Data Preprocessing/3. Statistics2.mp4
217.6 MB
6. Supervised Learning - Regression/6. Polynomial Linear Regression Model Development.mp4
217.0 MB
2. Machine Learning Useful Packages (Libraries)/13. Visualization with Matplotlib2.mp4
215.2 MB
2. Machine Learning Useful Packages (Libraries)/11. Pandas4.mp4
212.9 MB
2. Machine Learning Useful Packages (Libraries)/14. Visualization with Matplotlib3.mp4
198.0 MB
3. Data Preprocessing/12. Normalization.mp4
195.9 MB
5. Supervised Learning - Classification/13. Model Evaluation - Calculating with Python.mp4
182.5 MB
6. Supervised Learning - Regression/4. Evaluation Metrics - Implementation.mp4
167.7 MB
3. Data Preprocessing/1. Reading and Modifying a Dataset.mp4
162.1 MB
2. Machine Learning Useful Packages (Libraries)/6. NumPy5.mp4
160.1 MB
7. Unsupervised Learning - Clustering Techniques/10. Hierarchical Clustering Model Development.mp4
153.0 MB
2. Machine Learning Useful Packages (Libraries)/15. Visualization with Matplotlib4.mp4
149.9 MB
5. Supervised Learning - Classification/3. k-NN Model Development.mp4
147.5 MB
2. Machine Learning Useful Packages (Libraries)/7. NumPy6.mp4
141.0 MB
8. Hyper Parameter Optimization (Model Tuning)/4. k-NN - Model Tuning.mp4
140.1 MB
3. Data Preprocessing/8. Outlier Detection2.mp4
137.0 MB
3. Data Preprocessing/5. Missing Values1.mp4
135.9 MB
2. Machine Learning Useful Packages (Libraries)/16. Visualization with Matplotlib5.mp4
135.5 MB
8. Hyper Parameter Optimization (Model Tuning)/2. Support Vector Regression - Model Tuning.mp4
131.7 MB
6. Supervised Learning - Regression/10. Support Vector Regression Model Development.mp4
126.9 MB
2. Machine Learning Useful Packages (Libraries)/10. Pandas3.mp4
123.6 MB
2. Machine Learning Useful Packages (Libraries)/9. Pandas2.mp4
122.6 MB
5. Supervised Learning - Classification/11. Logistic Regression Model Development.mp4
117.6 MB
3. Data Preprocessing/4. Statistics3 - Covariance.mp4
112.7 MB
7. Unsupervised Learning - Clustering Techniques/5. K-means Model Development2.mp4
108.9 MB
7. Unsupervised Learning - Clustering Techniques/6. K-means - Model Evaluation.mp4
107.4 MB
2. Machine Learning Useful Packages (Libraries)/12. Visualization with Matplotlib1.mp4
104.3 MB
2. Machine Learning Useful Packages (Libraries)/8. Pandas1.mp4
100.3 MB
7. Unsupervised Learning - Clustering Techniques/8. DBSCAN Model Development.mp4
91.1 MB
2. Machine Learning Useful Packages (Libraries)/4. NumPy3.mp4
88.6 MB
5. Supervised Learning - Classification/12. Model Evaluation Concepts.mp4
87.5 MB
6. Supervised Learning - Regression/2. Multiple Linear Regression - Model Development.mp4
79.3 MB
3. Data Preprocessing/7. Outlier Detection1.mp4
76.8 MB
8. Hyper Parameter Optimization (Model Tuning)/5. Overfitting and Underfitting.mp4
75.6 MB
1. Introduction/6. Installation of Required Libraries.mp4
74.2 MB
5. Supervised Learning - Classification/6. Decision Tree Model Development.mp4
70.1 MB
3. Data Preprocessing/10. Concatenation.mp4
69.1 MB
5. Supervised Learning - Classification/8. Naive Bayes Concepts.mp4
62.1 MB
5. Supervised Learning - Classification/9. Naive Bayes Model Development.mp4
61.8 MB
3. Data Preprocessing/11. Dummy Variable.mp4
60.4 MB
2. Machine Learning Useful Packages (Libraries)/3. NumPy2.mp4
59.7 MB
2. Machine Learning Useful Packages (Libraries)/5. NumPy4.mp4
59.3 MB
5. Supervised Learning - Classification/7. Decision Tree - Cross Validation.mp4
57.3 MB
6. Supervised Learning - Regression/3. Evaluation Metrics - Concepts.mp4
51.9 MB
5. Supervised Learning - Classification/2. k-NN Concepts.mp4
50.4 MB
1. Introduction/7. Spyder Interface.mp4
48.6 MB
4. Machine Learning Introduction/1. Learning Types.mp4
47.6 MB
7. Unsupervised Learning - Clustering Techniques/2. K-means Concepts1.mp4
46.7 MB
7. Unsupervised Learning - Clustering Techniques/1. Introduction.mp4
40.0 MB
2. Machine Learning Useful Packages (Libraries)/2. NumPy1.mp4
39.3 MB
7. Unsupervised Learning - Clustering Techniques/4. K-means Model Development1.mp4
37.7 MB
3. Data Preprocessing/2. Statistics1.mp4
35.7 MB
3. Data Preprocessing/9. Outlier Detection3.mp4
32.5 MB
6. Supervised Learning - Regression/7. Random Forest Concepts.mp4
31.7 MB
6. Supervised Learning - Regression/9. Support Vector Regression Concepts.mp4
28.3 MB
7. Unsupervised Learning - Clustering Techniques/7. DBSCAN Concepts.mp4
28.2 MB
6. Supervised Learning - Regression/5. Polynomial Linear Regression Concepts.mp4
27.7 MB
1. Introduction/2. What is Machine Learning Some Basic Terms.mp4
27.1 MB
5. Supervised Learning - Classification/5. Decision Tree Concepts.mp4
26.9 MB
7. Unsupervised Learning - Clustering Techniques/9. Hierarchical Clustering Concepts.mp4
25.5 MB
1. Introduction/5. IDE Installation.mp4
23.4 MB
7. Unsupervised Learning - Clustering Techniques/3. K-means Concepts2.mp4
22.3 MB
1. Introduction/1. Course Content.mp4
17.9 MB
8. Hyper Parameter Optimization (Model Tuning)/1. Introduction.mp4
17.9 MB
8. Hyper Parameter Optimization (Model Tuning)/3. K-Means - Model Tuning.mp4
16.0 MB
5. Supervised Learning - Classification/10. Logistic Regression Concepts.mp4
11.4 MB
1. Introduction/4. Python IDE.mp4
7.9 MB
5. Supervised Learning - Classification/1. Supervised Learning Models - Introduction and Understanding the Data.srt
33.9 kB
6. Supervised Learning - Regression/1. Simple and Multiple Linear Regression Concepts.srt
32.0 kB
5. Supervised Learning - Classification/4. k-NN Training-Set and Test-Set Creation.srt
28.4 kB
2. Machine Learning Useful Packages (Libraries)/11. Pandas4.srt
27.3 kB
2. Machine Learning Useful Packages (Libraries)/13. Visualization with Matplotlib2.srt
26.3 kB
6. Supervised Learning - Regression/8. Random Forest Model Development.srt
25.2 kB
3. Data Preprocessing/6. Missing Values2.srt
22.9 kB
3. Data Preprocessing/1. Reading and Modifying a Dataset.srt
22.7 kB
3. Data Preprocessing/12. Normalization.srt
22.4 kB
3. Data Preprocessing/3. Statistics2.srt
22.4 kB
6. Supervised Learning - Regression/6. Polynomial Linear Regression Model Development.srt
21.2 kB
5. Supervised Learning - Classification/13. Model Evaluation - Calculating with Python.srt
20.4 kB
2. Machine Learning Useful Packages (Libraries)/14. Visualization with Matplotlib3.srt
20.1 kB
5. Supervised Learning - Classification/12. Model Evaluation Concepts.srt
19.8 kB
2. Machine Learning Useful Packages (Libraries)/6. NumPy5.srt
19.6 kB
2. Machine Learning Useful Packages (Libraries)/7. NumPy6.srt
18.9 kB
6. Supervised Learning - Regression/4. Evaluation Metrics - Implementation.srt
18.7 kB
7. Unsupervised Learning - Clustering Techniques/10. Hierarchical Clustering Model Development.srt
18.1 kB
2. Machine Learning Useful Packages (Libraries)/9. Pandas2.srt
17.7 kB
2. Machine Learning Useful Packages (Libraries)/8. Pandas1.srt
17.7 kB
2. Machine Learning Useful Packages (Libraries)/15. Visualization with Matplotlib4.srt
17.7 kB
2. Machine Learning Useful Packages (Libraries)/10. Pandas3.srt
17.0 kB
5. Supervised Learning - Classification/3. k-NN Model Development.srt
16.9 kB
5. Supervised Learning - Classification/8. Naive Bayes Concepts.srt
16.7 kB
2. Machine Learning Useful Packages (Libraries)/12. Visualization with Matplotlib1.srt
16.4 kB
3. Data Preprocessing/4. Statistics3 - Covariance.srt
16.1 kB
3. Data Preprocessing/8. Outlier Detection2.srt
15.5 kB
2. Machine Learning Useful Packages (Libraries)/16. Visualization with Matplotlib5.srt
14.8 kB
3. Data Preprocessing/5. Missing Values1.srt
14.8 kB
7. Unsupervised Learning - Clustering Techniques/5. K-means Model Development2.srt
14.1 kB
2. Machine Learning Useful Packages (Libraries)/4. NumPy3.srt
13.9 kB
8. Hyper Parameter Optimization (Model Tuning)/2. Support Vector Regression - Model Tuning.srt
13.9 kB
3. Data Preprocessing/7. Outlier Detection1.srt
13.6 kB
8. Hyper Parameter Optimization (Model Tuning)/4. k-NN - Model Tuning.srt
13.4 kB
6. Supervised Learning - Regression/3. Evaluation Metrics - Concepts.srt
12.9 kB
5. Supervised Learning - Classification/11. Logistic Regression Model Development.srt
12.2 kB
7. Unsupervised Learning - Clustering Techniques/6. K-means - Model Evaluation.srt
11.8 kB
5. Supervised Learning - Classification/2. k-NN Concepts.srt
11.8 kB
6. Supervised Learning - Regression/10. Support Vector Regression Model Development.srt
11.7 kB
7. Unsupervised Learning - Clustering Techniques/2. K-means Concepts1.srt
11.5 kB
8. Hyper Parameter Optimization (Model Tuning)/5. Overfitting and Underfitting.srt
11.5 kB
7. Unsupervised Learning - Clustering Techniques/8. DBSCAN Model Development.srt
10.7 kB
3. Data Preprocessing/2. Statistics1.srt
10.4 kB
2. Machine Learning Useful Packages (Libraries)/3. NumPy2.srt
9.9 kB
5. Supervised Learning - Classification/7. Decision Tree - Cross Validation.srt
9.9 kB
1. Introduction/7. Spyder Interface.srt
9.2 kB
4. Machine Learning Introduction/1. Learning Types.srt
9.1 kB
6. Supervised Learning - Regression/2. Multiple Linear Regression - Model Development.srt
8.9 kB
1. Introduction/6. Installation of Required Libraries.srt
8.8 kB
7. Unsupervised Learning - Clustering Techniques/1. Introduction.srt
8.5 kB
2. Machine Learning Useful Packages (Libraries)/2. NumPy1.srt
8.4 kB
3. Data Preprocessing/10. Concatenation.srt
8.2 kB
3. Data Preprocessing/11. Dummy Variable.srt
8.1 kB
2. Machine Learning Useful Packages (Libraries)/5. NumPy4.srt
7.9 kB
5. Supervised Learning - Classification/5. Decision Tree Concepts.srt
7.8 kB
6. Supervised Learning - Regression/9. Support Vector Regression Concepts.srt
7.7 kB
2. Machine Learning Useful Packages (Libraries)/1.1 Python Source Codes.zip
7.6 kB
6. Supervised Learning - Regression/7. Random Forest Concepts.srt
7.6 kB
7. Unsupervised Learning - Clustering Techniques/3. K-means Concepts2.srt
7.3 kB
1. Introduction/2. What is Machine Learning Some Basic Terms.srt
7.3 kB
5. Supervised Learning - Classification/6. Decision Tree Model Development.srt
7.2 kB
5. Supervised Learning - Classification/9. Naive Bayes Model Development.srt
7.0 kB
6. Supervised Learning - Regression/5. Polynomial Linear Regression Concepts.srt
6.8 kB
7. Unsupervised Learning - Clustering Techniques/9. Hierarchical Clustering Concepts.srt
6.7 kB
1. Introduction/1. Course Content.srt
6.6 kB
7. Unsupervised Learning - Clustering Techniques/7. DBSCAN Concepts.srt
6.4 kB
7. Unsupervised Learning - Clustering Techniques/4. K-means Model Development1.srt
5.3 kB
8. Hyper Parameter Optimization (Model Tuning)/1. Introduction.srt
4.8 kB
3. Data Preprocessing/9. Outlier Detection3.srt
3.6 kB
5. Supervised Learning - Classification/10. Logistic Regression Concepts.srt
3.5 kB
1. Introduction/5. IDE Installation.srt
3.3 kB
1. Introduction/4. Python IDE.srt
2.8 kB
8. Hyper Parameter Optimization (Model Tuning)/3. K-Means - Model Tuning.srt
2.6 kB
1. Introduction/3. Python Installation.html
612 Bytes
2. Machine Learning Useful Packages (Libraries)/11.1 Data_Set.csv
580 Bytes
3. Data Preprocessing/1.1 Data_Set.csv
580 Bytes
2. Machine Learning Useful Packages (Libraries)/1. Python Source Codes.html
368 Bytes
3. Data Preprocessing/10.1 Data_New.csv
201 Bytes
2. Machine Learning Useful Packages (Libraries)/17. Chapter 2 Quiz.html
160 Bytes
3. Data Preprocessing/13. Chapter3 Quiz.html
160 Bytes
4. Machine Learning Introduction/2. Chapter 4 Quiz.html
160 Bytes
5. Supervised Learning - Classification/14. Chapter 5 Quiz.html
160 Bytes
6. Supervised Learning - Regression/11. Chapter 6 Quiz.html
160 Bytes
7. Unsupervised Learning - Clustering Techniques/11. Chapter 7 Quiz.html
160 Bytes
3. Data Preprocessing/GetFreeCourses.Co.url
116 Bytes
5. Supervised Learning - Classification/GetFreeCourses.Co.url
116 Bytes
Download Paid Udemy Courses For Free.url
116 Bytes
GetFreeCourses.Co.url
116 Bytes
随机展示
相关说明
本站不存储任何资源内容,只收集BT种子元数据(例如文件名和文件大小)和磁力链接(BT种子标识符),并提供查询服务,是一个完全合法的搜索引擎系统。 网站不提供种子下载服务,用户可以通过第三方链接或磁力链接获取到相关的种子资源。本站也不对BT种子真实性及合法性负责,请用户注意甄别!
>